Displaying publications 21 - 40 of 84 in total

Abstract:
Sort:
  1. Oong XY, Ng KT, Tan JL, Chan KG, Kamarulzaman A, Chan YF, et al.
    PLoS One, 2017;12(1):e0170610.
    PMID: 28129386 DOI: 10.1371/journal.pone.0170610
    Reassortment of genetic segments between and within influenza B lineages (Victoria and Yamagata) has been shown to generate novel reassortants with unique genetic characteristics. Based on hemagglutinin (HA) and neuraminidase (NA) genes, recent surveillance study has identified reassortment properties in B/Phuket/3073/2013-like virus, which is currently used in the WHO-recommended influenza vaccine. To understand the potential reassortment patterns for all gene segments, four B/Phuket/3073/2013-like viruses and two unique reassortants (one each from Yamagata and Victoria) detected in Malaysia from 2012-2014 were subjected to whole-genome sequencing. Each gene was phylogenetically classified into lineages, clades and sub-clades. Three B/Phuket/3073/2013-like viruses from Yamagata lineage were found to be intra-clade reassortants, possessing PA and NA genes derived from Stockholm/12-like sub-clade, while the remaining genes from Wisconsin/01-like sub-clade (both sub-clades were within Yamagata Clade 3/Yam-3). However, the other B/Phuket/3073/2013-like virus had NS gene that derived from Stockholm/12-like sub-clade instead of Wisconsin/01-like sub-clade. One inter-clade reassortant had Yamagata Clade 2/Yam-2-derived HA and NP, and its remaining genes were Yam-3-derived. Within Victoria Clade 1/Vic-1 in Victoria lineage, one virus had intra-clade reassortment properties: HA and PB2 from Vic-1B sub-clade, MP and NS from a unique sub-clade "Vic-1C", and the remaining genes from Vic-1A sub-clade. Although random reassortment event may generate unique reassortants, detailed phylogenetic classification of gene segments showed possible genetic linkage between PA and NA genes in B/Phuket/3073/2013-like viruses, which requires further investigation. Understanding on reassortment patterns in influenza B evolution may contribute to future vaccine design.
  2. Raihan R, Akbar SMF, Al Mahtab M, Takahashi K, Masumoto J, Tabassum S, et al.
    PLoS One, 2019;14(6):e0218744.
    PMID: 31251754 DOI: 10.1371/journal.pone.0218744
    The direct cytopathic effects of the hepatitis B virus (HBV) on subsequent liver damage are not fully understood in HBV-infected patients. However, associations between the prevalence of various HBV genotypes and the extent of liver damage have been reported from different parts of the world. The purpose of this study was to determine the distribution of HBV genotypes in patients with chronic HBV infection in Bangladesh, a country of 160 million people, of which approximately 3-6 million are chronically infected HBV patients. In addition, whole and partial genome sequencing of HBV was performed to evaluate the relationship between HBV mutations and genotypes. We found that 42% of the patients with low HBV DNA and normal levels of alanine aminotransferase (ALT) had HBV genotype D. In contrast, the HBV genotype C was dominant among patients with high HBV DNA levels (>2000 IU/ml) and elevated ALT and in patients with liver cirrhosis (LC) and hepatocellular carcinomas (HCC). Whole and partial genome sequences of HBV revealed that most patients with LC and HCC had HBV genotype C with mutations at the T1762/A1764 positions. It seems that Bangladesh represents a borderline country, situated within East Asia, which mainly consists of individuals with HBV genotypes B and C, whereas in the western parts of Asia, HBV genotypes A and D are prevalent. Bangladesh is, therefore, an excellent model for the comparison of the pathophysiology of three major HBV genotypes in a single population. The findings of this study suggest a possible association between HBV viral factors and the extent of liver damage in chronic HBV-infected patients.
  3. Oong XY, Ng KT, Lam TT, Pang YK, Chan KG, Hanafi NS, et al.
    PLoS One, 2015;10(8):e0136254.
    PMID: 26313754 DOI: 10.1371/journal.pone.0136254
    Epidemiological and evolutionary dynamics of influenza B Victoria and Yamagata lineages remained poorly understood in the tropical Southeast Asia region, despite causing seasonal outbreaks worldwide. From 2012-2014, nasopharyngeal swab samples collected from outpatients experiencing acute upper respiratory tract infection symptoms in Kuala Lumpur, Malaysia, were screened for influenza viruses using a multiplex RT-PCR assay. Among 2,010/3,935 (51.1%) patients infected with at least one respiratory virus, 287 (14.3%) and 183 (9.1%) samples were tested positive for influenza A and B viruses, respectively. Influenza-positive cases correlate significantly with meteorological factors-total amount of rainfall, relative humidity, number of rain days, ground temperature and particulate matter (PM10). Phylogenetic reconstruction of haemagglutinin (HA) gene from 168 influenza B viruses grouped them into Yamagata Clade 3 (65, 38.7%), Yamagata Clade 2 (48, 28.6%) and Victoria Clade 1 (55, 32.7%). With neuraminidase (NA) phylogeny, 30 intra-clade (29 within Yamagata Clade 3, 1 within Victoria Clade 1) and 1 inter-clade (Yamagata Clade 2-HA/Yamagata Clade 3-NA) reassortants were identified. Study of virus temporal dynamics revealed a lineage shift from Victoria to Yamagata (2012-2013), and a clade shift from Yamagata Clade 2 to Clade 3 (2013-2014). Yamagata Clade 3 predominating in 2014 consisted of intra-clade reassortants that were closely related to a recent WHO vaccine candidate strain (B/Phuket/3073/2013), with the reassortment event occurred approximately 2 years ago based on Bayesian molecular clock estimation. Malaysian Victoria Clade 1 viruses carried H274Y substitution in the active site of neuraminidase, which confers resistance to oseltamivir. Statistical analyses on clinical and demographic data showed Yamagata-infected patients were older and more likely to experience headache while Victoria-infected patients were more likely to experience nasal congestion and sore throat. This study describes the evolution of influenza B viruses in Malaysia and highlights the importance of continuous surveillance for better vaccination policy in this region.
  4. Chow WZ, Ong LY, Razak SH, Lee YM, Ng KT, Yong YK, et al.
    PLoS One, 2013;8(5):e62560.
    PMID: 23667490 DOI: 10.1371/journal.pone.0062560
    Since the discovery of HIV-1 circulating recombinant form (CRF) 33_01B in Malaysia in the early 2000 s, continuous genetic diversification and active recombination involving CRF33_01B and other circulating genotypes in the region including CRF01_AE and subtype B' of Thai origin, have led to the emergence of novel CRFs and unique recombinant forms. The history and magnitude of CRF33_01B transmission among various risk groups including people who inject drugs (PWID) however have not been investigated despite the high epidemiological impact of CRF33_01B in the region. We update the most recent molecular epidemiology of HIV-1 among PWIDs recruited in Malaysia between 2010 and 2011 by population sequencing and phylogenetic analysis of 128 gag-pol sequences. HIV-1 CRF33_01B was circulating among 71% of PWIDs whilst a lower prevalence of other previously dominant HIV-1 genotypes [subtype B' (11%) and CRF01_AE (5%)] and CRF01_AE/B' unique recombinants (13%) were detected, indicating a significant shift in genotype replacement in this population. Three clusters of CRF01_AE/B' recombinants displaying divergent yet phylogenetically-related mosaic genomes to CRF33_01B were identified and characterized, suggestive of an abrupt emergence of multiple novel CRF clades. Using rigorous maximum likelihood approach and the Bayesian Markov chain Monte Carlo (MCMC) sampling of CRF33_01Bpol sequences to elucidate the past population dynamics, we found that the founder lineages of CRF33_01B were likely to have first emerged among PWIDs in the early 1990 s before spreading exponentially to various high and low-risk populations (including children who acquired infections from their mothers) and later on became endemic around the early 2000 s. Taken together, our findings provide notable genetic evidence indicating the widespread expansion of CRF33_01B among PWIDs and into the general population. The emergence of numerous previously unknown recombinant clades highlights the escalating genetic complexity of HIV-1 in the Southeast Asian region.
  5. Chow WZ, Takebe Y, Syafina NE, Prakasa MS, Chan KG, Al-Darraji HA, et al.
    PLoS One, 2014;9(1):e85250.
    PMID: 24465513 DOI: 10.1371/journal.pone.0085250
    The HIV epidemic is primarily characterised by the circulation of HIV-1 group M (main) comprising of 11 subtypes and sub-subtypes (A1, A2, B-D, F1, F2, G, H, J, and K) and to date 55 circulating recombinant forms (CRFs). In Southeast Asia, active inter-subtype recombination involving three main circulating genotypes--subtype B (including subtype B', the Thai variant of subtype B), CRF01_AE, and CRF33_01B--have contributed to the emergence of novel unique recombinant forms. In the present study, we conducted the molecular epidemiological surveillance of HIV-1 gag-RT genes among 258 people who inject drugs (PWIDs) in Kuala Lumpur, Malaysia, between 2009 and 2011 whereby a novel CRF candidate was recently identified. The near full-length genome sequences obtained from six epidemiologically unlinked individuals showed identical mosaic structures consisting of subtype B' and CRF01_AE, with six unique recombination breakpoints in the gag-RT, pol, and env regions. Among the high-risk population of PWIDs in Malaysia, which was predominantly infected by CRF33_01B (>70%), CRF58_01B circulated at a low but significant prevalence (2.3%, 6/258). Interestingly, the CRF58_01B shared two unique recombination breakpoints with other established CRFs in the region: CRF33_01B, CRF48_01B, and CRF53_01B in the gag gene, and CRF15_01B (from Thailand) in the env gene. Extended Bayesian Markov chain Monte Carlo sampling analysis showed that CRF58_01B and other recently discovered CRFs were most likely to have originated in Malaysia, and that the recent spread of recombinant lineages in the country had little influence from neighbouring countries. The isolation, genetic characterization, and evolutionary features of CRF58_01B among PWIDs in Malaysia signify the increasingly complex HIV-1 diversity in Southeast Asia that may hold an implication on disease treatment, control, and prevention.
  6. Chow WZ, Bon AH, Keating S, Anderios F, Halim HA, Takebe Y, et al.
    PLoS One, 2016;11(8):e0161853.
    PMID: 27575746 DOI: 10.1371/journal.pone.0161853
    Transfusion-transmissible infections including HIV-1 continue to pose major risks for unsafe blood transfusions due to both window phase infections and divergent viruses that may not be detected by donor screening assays. Given the recent emergence of several HIV-1 circulating recombinant forms (CRFs) in high-risk populations in the Southeast Asia region, we investigated the genetic diversity of HIV-1 among the blood donors in Kuala Lumpur, Malaysia. A total of 211 HIV-positive plasma samples detected among 730,188 donations to the National Blood Centre between 2013 and 2014 were provided (90.5% male, median age: 27.0 years old). Recent or long-term infection status at the time of donation was determined using a limiting antigen avidity enzyme immunoassay (LAg-Avidity EIA). HIV-1 gag-pol genes were amplified and sequenced from residual plasma for 149 cases followed by genotype determination using phylogenetic and recombination analyses. Transmitted antiretroviral resistance mutations were not observed among the blood donors, among which 22.7% were classified as recent or incident infections. Major circulating HIV-1 genotypes determined by neighbour-joining phylogenetic inference included CRF01_AE at 40.9% (61/149), CRF33_01B at 21.5% (32/149), and subtype B at 10.1% (15/149). Newly-described CRFs including CRF54_01B circulated at 4.0%, CRF74_01B at 2.0%, and CRF53_01B and CRF48_01B at 0.7% each. Interestingly, unique HIV-1 genotypes including African subtype G (8.7%), CRF45_cpx (1.3%), CRF02_AG (0.7%) and CRF07_BC (0.7%) from China were detected for the first time in the country. A cluster of subtype G sequences formed a distinct founder sub-lineage within the African strains. In addition, 8.7% (13/149) of HIV-infected donors had unique recombinant forms (URFs) including CRF01_AE/B' (4.7%), B'/C (2.7%) and B'/G (1.3%) recombinants. Detailed analysis identified similar recombinant structures with shared parental strains among the B'/C and B'/G URFs, some of which were sequenced from recently infected individuals, indicating the possible emergence and on-going spread of foreign clades of CRF candidates among the local population. The findings demonstrate extensive molecular complexity of HIV-1 among the infected blood donors in Malaysia, driven in part by the increased spread of recently described CRFs and multiple introductions of previously unreported genotypes from highly prevalent countries.
  7. Hora B, Keating SM, Chen Y, Sanchez AM, Sabino E, Hunt G, et al.
    PLoS One, 2016;11(6):e0157340.
    PMID: 27314585 DOI: 10.1371/journal.pone.0157340
    HIV-1 subtypes and drug resistance are routinely tested by many international surveillance groups. However, results from different sites often vary. A systematic comparison of results from multiple sites is needed to determine whether a standardized protocol is required for consistent and accurate data analysis. A panel of well-characterized HIV-1 isolates (N = 50) from the External Quality Assurance Program Oversight Laboratory (EQAPOL) was assembled for evaluation at seven international sites. This virus panel included seven subtypes, six circulating recombinant forms (CRFs), nine unique recombinant forms (URFs) and three group O viruses. Seven viruses contained 10 major drug resistance mutations (DRMs). HIV-1 isolates were prepared at a concentration of 107 copies/ml and compiled into blinded panels. Subtypes and DRMs were determined with partial or full pol gene sequences by conventional Sanger sequencing and/or Next Generation Sequencing (NGS). Subtype and DRM results were reported and decoded for comparison with full-length genome sequences generated by EQAPOL. The partial pol gene was amplified by RT-PCR and sequenced for 89.4%-100% of group M viruses at six sites. Subtyping results of majority of the viruses (83%-97.9%) were correctly determined for the partial pol sequences. All 10 major DRMs in seven isolates were detected at these six sites. The complete pol gene sequence was also obtained by NGS at one site. However, this method missed six group M viruses and sequences contained host chromosome fragments. Three group O viruses were only characterized with additional group O-specific RT-PCR primers employed by one site. These results indicate that PCR protocols and subtyping tools should be standardized to efficiently amplify diverse viruses and more consistently assign virus genotypes, which is critical for accurate global subtype and drug resistance surveillance. Targeted NGS analysis of partial pol sequences can serve as an alternative approach, especially for detection of low-abundance DRMs.
  8. Lim YL, Ee R, How KY, Lee SK, Yong D, Tee KK, et al.
    PeerJ, 2015;3:e1225.
    PMID: 26336650 DOI: 10.7717/peerj.1225
    In this study, we sequenced the genome of Pandoraea pnomenusa RB38 using Pacific Biosciences RSII (PacBio) Single Molecule Real Time (SMRT) sequencing technology. A pair of cognate luxI/R homologs was identified where the luxI homolog, ppnI, was found adjacent to a luxR homolog, ppnR1. An additional orphan luxR homolog, ppnR2, was also discovered. Multiple sequence alignment and phylogenetic analysis revealed that ppnI is an N-acyl homoserine lactone (AHL) synthase gene that is distinct from those of the nearest phylogenetic neighbor viz. Burkholderia spp. High resolution tandem mass spectrometry (LC-MS/MS) analysis showed that Escherichia coli BL21 harboring ppnI produced a similar AHL profile (N-octanoylhomoserine lactone, C8-HSL) as P. pnomenusa RB38, the wild-type donor strain, confirming that PpnI directed the synthesis of AHL in P. pnomenusa RB38. To our knowledge, this is the first documentation of the luxI/R homologs of the genus Pandoraea.
  9. Chan KG, Priya K, Chang CY, Abdul Rahman AY, Tee KK, Yin WF
    PeerJ, 2016;4:e2223.
    PMID: 27547539 DOI: 10.7717/peerj.2223
    Functional genomics research can give us valuable insights into bacterial gene function. RNA Sequencing (RNA-seq) can generate information on transcript abundance in bacteria following abiotic stress treatments. In this study, we used the RNA-seq technique to study the transcriptomes of the opportunistic nosocomial pathogen Pseudomonas aeruginosa PAO1 following heat shock. Samples were grown at both the human body temperature (37 °C) and an arbitrarily-selected temperature of 46 °C. In this work using RNA-seq, we identified 133 genes that are differentially expressed at 46 °C compared to the human body temperature. Our work identifies some key P. aeruginosa PAO1 genes whose products have importance in both environmental adaptation as well as in vivo infection in febrile hosts. More importantly, our transcriptomic results show that many genes are only expressed when subjected to heat shock. Because the RNA-seq can generate high throughput gene expression profiles, our work reveals many unanticipated genes with further work to be done exploring such genes products.
  10. Rhee SY, Blanco JL, Jordan MR, Taylor J, Lemey P, Varghese V, et al.
    PLoS Med, 2015 Apr;12(4):e1001810.
    PMID: 25849352 DOI: 10.1371/journal.pmed.1001810
    BACKGROUND: Regional and subtype-specific mutational patterns of HIV-1 transmitted drug resistance (TDR) are essential for informing first-line antiretroviral (ARV) therapy guidelines and designing diagnostic assays for use in regions where standard genotypic resistance testing is not affordable. We sought to understand the molecular epidemiology of TDR and to identify the HIV-1 drug-resistance mutations responsible for TDR in different regions and virus subtypes.

    METHODS AND FINDINGS: We reviewed all GenBank submissions of HIV-1 reverse transcriptase sequences with or without protease and identified 287 studies published between March 1, 2000, and December 31, 2013, with more than 25 recently or chronically infected ARV-naïve individuals. These studies comprised 50,870 individuals from 111 countries. Each set of study sequences was analyzed for phylogenetic clustering and the presence of 93 surveillance drug-resistance mutations (SDRMs). The median overall TDR prevalence in sub-Saharan Africa (SSA), south/southeast Asia (SSEA), upper-income Asian countries, Latin America/Caribbean, Europe, and North America was 2.8%, 2.9%, 5.6%, 7.6%, 9.4%, and 11.5%, respectively. In SSA, there was a yearly 1.09-fold (95% CI: 1.05-1.14) increase in odds of TDR since national ARV scale-up attributable to an increase in non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance. The odds of NNRTI-associated TDR also increased in Latin America/Caribbean (odds ratio [OR] = 1.16; 95% CI: 1.06-1.25), North America (OR = 1.19; 95% CI: 1.12-1.26), Europe (OR = 1.07; 95% CI: 1.01-1.13), and upper-income Asian countries (OR = 1.33; 95% CI: 1.12-1.55). In SSEA, there was no significant change in the odds of TDR since national ARV scale-up (OR = 0.97; 95% CI: 0.92-1.02). An analysis limited to sequences with mixtures at less than 0.5% of their nucleotide positions—a proxy for recent infection—yielded trends comparable to those obtained using the complete dataset. Four NNRTI SDRMs—K101E, K103N, Y181C, and G190A—accounted for >80% of NNRTI-associated TDR in all regions and subtypes. Sixteen nucleoside reverse transcriptase inhibitor (NRTI) SDRMs accounted for >69% of NRTI-associated TDR in all regions and subtypes. In SSA and SSEA, 89% of NNRTI SDRMs were associated with high-level resistance to nevirapine or efavirenz, whereas only 27% of NRTI SDRMs were associated with high-level resistance to zidovudine, lamivudine, tenofovir, or abacavir. Of 763 viruses with TDR in SSA and SSEA, 725 (95%) were genetically dissimilar; 38 (5%) formed 19 sequence pairs. Inherent limitations of this study are that some cohorts may not represent the broader regional population and that studies were heterogeneous with respect to duration of infection prior to sampling.

    CONCLUSIONS: Most TDR strains in SSA and SSEA arose independently, suggesting that ARV regimens with a high genetic barrier to resistance combined with improved patient adherence may mitigate TDR increases by reducing the generation of new ARV-resistant strains. A small number of NNRTI-resistance mutations were responsible for most cases of high-level resistance, suggesting that inexpensive point-mutation assays to detect these mutations may be useful for pre-therapy screening in regions with high levels of TDR. In the context of a public health approach to ARV therapy, a reliable point-of-care genotypic resistance test could identify which patients should receive standard first-line therapy and which should receive a protease-inhibitor-containing regimen.

  11. Hong KW, Tee KK, Yin WF, Roberts RJ, Chan KG
    Microbiol Resour Announc, 2019 Oct 24;8(43).
    PMID: 31649075 DOI: 10.1128/MRA.00898-19
    Burkholderia pseudomallei is the etiological agent of melioidosis, which has been studied by transcriptome and secretome analyses. However, little is known about the methylome of this pathogen. Here, we present the complete genome and methylome of melioidosis-causing B. pseudomallei strain 982.
  12. Tee KK, Kamarulzaman A, Ng KP
    Med Microbiol Immunol, 2006 Jun;195(2):107-12.
    PMID: 16404607
    To assess the prevalence of major drug resistance mutations in antiretroviral (ARV)-treated patients with detectable viral load (VL) in Kuala Lumpur, Malaysia, genotypic resistance testing was performed among treated human immunodeficiency virus type 1 (HIV-1) patients attending the University Malaya Medical Center between July 2003 and November 2004. The reverse transcriptase (RT) and protease genes from 36 plasma samples with detectable VL were examined for major mutations associated with ARV resistance as reported by the International AIDS Society-USA Drug Resistance Mutations Group. The prevalence of patients with at least one major mutation conferring drug resistance to nucleoside RT inhibitors (NRTIs), non-NRTIs (NNRTIs) or protease inhibitors (PIs) was 77.8%. In the RT gene, the frequency of mutations associated with NRTIs and NNRTIs resistance was 52.8 and 63.9%, respectively, with M184V and K103N mutations being selected most frequently by these drugs. A patient with Q151M mutation complex was also detected. Twenty-two percent of the patients had mutations associated with PIs. The following pattern of prevalence of ARV-resistant HIV-1 variants was observed: NNRTI-resistant > NRTI-resistant > PI-resistant. The prevalence of major drug resistance mutations among ARV-treated patients with detectable VL is high in Kuala Lumpur. Genotypic drug resistance testing is therefore important for monitoring patients experiencing ARV regimen failure.
  13. Ng KT, Ong LY, Takebe Y, Kamarulzaman A, Tee KK
    J Virol, 2012 Oct;86(20):11405-6.
    PMID: 22997423
    We report here the first novel HIV-1 circulating recombinant form (CRF) 54_01B (CRF54_01B) isolated from three epidemiologically unlinked subjects of different risk groups in Malaysia. These recently sampled recombinants showed a complex genome organization composed of parental subtype B' and CRF01_AE, with identical recombination breakpoints observed in the gag, pol, and vif genes. Such a discovery highlights the ongoing active generation and spread of intersubtype recombinants involving the subtype B' and CRF01_AE lineages and indicates the potential of the new CRF in bridging HIV-1 transmission among different risk groups in Southeast Asia.
  14. Chow WZ, Al-Darraji H, Lee YM, Takebe Y, Kamarulzaman A, Tee KK
    J Virol, 2012 Oct;86(20):11398-9.
    PMID: 22997419
    A novel HIV-1 genotype designated CRF53_01B was recently characterized from three epidemiologically unrelated persons in Malaysia. Here we announced three recently isolated full-length genomes of CRF53_01B, which is likely to be phylogenetically linked to CRF33_01B, circulating widely in Southeast Asia. The genome sequences may contribute to HIV-1 molecular surveillance and future vaccine development in the region.
  15. Chook JB, Ngeow YF, Tee KK, Peh SC, Mohamed R
    J Pathog, 2017;2017:1231204.
    PMID: 29410920 DOI: 10.1155/2017/1231204
    Fulminant hepatitis (FH) is a life-threatening liver disease characterised by intense immune attack and massive liver cell death. The common precore stop codon mutation of hepatitis B virus (HBV), A1896, is frequently associated with FH, but lacks specificity. This study attempts to uncover all possible viral nucleotides that are specifically associated with FH through a compiled sequence analysis of FH and non-FH cases from acute infection. We retrieved 67 FH and 280 acute non-FH cases of hepatitis B from GenBank and applied support vector machine (SVM) model to seek candidate nucleotides highly predictive of FH. Six best candidates with top predictive accuracy, 92.5%, were used to build a SVM model; they are C2129 (85.3%), T720 (83.0%), Y2131 (82.4%), T2013 (82.1%), K2048 (82.1%), and A2512 (82.1%). This model gave a high specificity (99.3%), positive predictive value (95.6%), and negative predictive value (92.1%), but only moderate sensitivity (64.2%). We successfully built a SVM model comprising six variants that are highly predictive and specific for FH: four in the core region and one each in the polymerase and the surface regions. These variants indicate that intracellular virion/core retention could play an important role in the progression to FH.
  16. Yap PSX, Tan TS, Chan YF, Tee KK, Kamarulzaman A, Teh CSJ
    J Microbiol Biotechnol, 2020 Jul 28;30(7):962-966.
    PMID: 32627759 DOI: 10.4014/jmb.2006.06009
    Monitoring the mutation dynamics of human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical in understanding its infectivity, virulence and pathogenicity for development of a vaccine. In an "age of mobility," the pandemic highlights the importance and vulnerability of regionalization and labor market interdependence in Southeast Asia. We intend to characterize the genetic variability of viral populations within the region to provide preliminary information for regional surveillance in the future. By analyzing 142 complete genomes from South East Asian (SEA) countries, we identified three central variants distinguished by nucleotide and amino acid changes.
  17. Ong LY, Razak SN, Lee YM, Sri La Sri Ponnampalavanar S, Syed Omar SF, Azwa RI, et al.
    J Med Virol, 2014 Jan;86(1):38-44.
    PMID: 24127302 DOI: 10.1002/jmv.23772
    Expansion of antiretroviral treatment programs have led to the growing concern for the development of antiretroviral drug resistance. The aims were to assess the prevalence of drug resistant HIV-1 variants and to identify circulating subtypes among HAART-naïve patients. Plasma specimens from N = 100 HIV+ HAART-naïve adult were collected between March 2008 and August 2010 and viral RNA were extracted for nested PCR and sequenced. PR-RT sequences were protein aligned and checked for transmitted drug resistance mutations. Phylogenetic reconstruction and recombination analysis were performed to determine the genotypes. Based on the WHO consensus guidelines, none of the recruited patients had any transmitted drug resistance mutations. When analyzed against the Stanford guidelines, 35% of patients had at least one reported mutation that may reduce drug susceptibility to PI (24%), NRTI (5%), and NNRTI (14%). The commonly detected mutation that may affect current first line therapy was V179D (3%), which may lead to reduced susceptibility to NNRTI. The predominant circulating HIV-1 genotypes were CRF01_AE (51%) and CRF33_01B (17%). The prevalence of unique recombinant forms (URF) was 7%; five distinct recombinant structures involving CRF01_AE and subtype B' were observed, among them a cluster of three isolates that could form a novel circulating recombinant form (CRF) candidate. Transmitted drug resistance prevalence among HAART-naïve patients was low in this cohort of patients in Kuala Lumpur despite introduction of HAART 5 years ago. Owing to the high genetic diversity, continued molecular surveillance can identify the persistent emergence of HIV-1 URF and novel CRF with significant epidemiological impact.
  18. Tee KK, Chan PQ, Loh AM, Singh S, Teo CH, Iyadorai T, et al.
    J Med Virol, 2023 Feb;95(2):e28520.
    PMID: 36691929 DOI: 10.1002/jmv.28520
    Pteropine orthoreovirus (PRV), an emerging bat-borne virus, has been linked to cases of acute respiratory infections (ARI) in humans. The prevalence, epidemiology and genomic diversity of PRV among ARI of unknown origin were studied. Among 632 urban outpatients tested negative for all known respiratory viruses, 2.2% were PRV-positive. Patients mainly presented with moderate to severe forms of cough, sore throat and muscle ache, but rarely with fever. Phylogenetic analysis revealed that over 90% of patients infected with the Melaka virus (MelV)-like PRV, while one patient infected with the Pulau virus previously found only in fruit bats. Human oral keratinocytes and nasopharyngeal epithelial cells were susceptible to clinical isolates of PRV, including the newly isolated MelV-like 12MYKLU1034. Whole genome sequence of 12MYKLU1034 using Nanopore technique revealed a novel reassortant strain. Evolutionary analysis of the global PRV strains suggests the continuous evolution of PRV through genetic reassortment among PRV strains circulating in human, bats and non-human primate hosts, creating a spectrum of reassortant lineages with complex evolutionary characteristics. In summary, the role of PRV as a common etiologic agent of ARI is evident. Continuous monitoring of PRV prevalence, pathogenicity and diversity among human and animal hosts is important to trace the emergence of novel reassortants.
  19. Chan KG, Ng KT, Chong TM, Pang YK, Kamarulzaman A, Yin WF, et al.
    J Genomics, 2015;3:72-4.
    PMID: 26157506 DOI: 10.7150/jgen.12574
    Staphylococcus haemolyticus is one of the pathogens that harbor a high level of antibiotic resistance. Here, we highlighted the potential determinants for multidrug resistance and virulence from the draft genome of Staphylococcus haemolyticus strain C10A, isolated from a patient with chronic obstructive pulmonary disease exacerbation.
  20. Chin PS, Ang GY, Yu CY, Tan EL, Tee KK, Yin WF, et al.
    J Food Prot, 2018 Feb;81(2):284-289.
    PMID: 29360399 DOI: 10.4315/0362-028X.JFP-17-186
    Listeria spp. are ubiquitous in nature and can be found in various environmental niches such as soil, sewage, river water, plants, and foods, but the most frequently isolated species are Listeria monocytogenes and Listeria innocua. In this study, the presence of Listeria spp. in raw chicken meat and chicken-related products sold in local markets in Klang Valley, Malaysia was investigated. A total of 44 Listeria strains (42 L. innocua and 2 L. welshimeri) were isolated from 106 samples. Antibiotic susceptibility tests of the L. innocua strains revealed a high prevalence of resistance to clindamycin (92.9%), ceftriaxone (76.2%), ampicillin (73.8%), tetracycline (69%), and penicillin G (66.7%). Overall, 31 L. innocua and 1 L. welshimeri strain were multidrug resistant, i.e., nonsusceptible to at least one antimicrobial agent in three or more antibiotic classes. The majority of the L. innocua strains were placed into five AscI pulsogroups, and overall 26 distinct AscI pulsotypes were identified. The detection of multidrug-resistant Listeria strains from different food sources and locations warrants attention because these strains could serve as reservoirs for antimicrobial resistance genes and may facilitate the spread and emergence of other drug-resistant strains.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links