Displaying publications 21 - 23 of 23 in total

Abstract:
Sort:
  1. Bapat RA, Muthusamy SK, Sidhu P, Mak KK, Parolia A, Pichika MR, et al.
    Macromol Biosci, 2021 Dec 06.
    PMID: 34870895 DOI: 10.1002/mabi.202100326
    Novel 3D-biomaterial scaffold is constructed having a combination of a new quaternary ammonium silane (k21) antimicrobial impregnated in 3D collagen printed scaffolds cross linked with Riboflavin in presence of d-alpha-tocopheryl poly(ethyleneglycol)-1000-succinate. Groups of "0.1% and 0.2% k21", and "0.1% and 0.2% Chlorhexidine (CHX)" are prepared. k21/CHX with neutralized collagen is printed with BioX. Riboflavin is photo-activated and examined using epifluorescence for Aggregatibacter actinomycetemcomitans (7-days). Collagen is examined using TEM and measured for porosity, and shape-fitting. Raman and tandem mass/solid-state are performed with molecular-docking and circular-dichroism. X-ray diffractions, rheological tests, contact angle, and ninhydrin assay are conducted. k21 samples demonstrated collagen aggregates while 0.1% CHX and 0.2% CHX showed irregularities. Porosity of control and "0.1% and 0.2% k21" scaffolds show no differences. Low contact angle, improved elastic-modulus, rigidity, and smaller strain in k21 groups are seen. Bacteria are reduced and strong organic intensities are seen in k21 scaffolds. Simulation shows hydrophobicity/electrostatic interaction. Crosslinking is observed in 0.2% CHX/79% and 0.2% k21/80%. Circular dichroism for k21 are suggestive of triple helix. XRD patterns appear at d = 5.97, 3.03, 2.78, 2.1, and 2.90 A°. 3D-printing of collagen impregnated with quaternary ammonium silane produces a promising scaffold with antimicrobial potency and structural stability.
  2. Sam IC, Chua CL, Rovie-Ryan JJ, Fu JY, Tong C, Sitam FT, et al.
    Emerg Infect Dis, 2015 Sep;21(9):1683-5.
    PMID: 26291585 DOI: 10.3201/eid2109.150439
  3. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links