Displaying publications 21 - 22 of 22 in total

Abstract:
Sort:
  1. Yew SM, Chan CL, Ngeow YF, Toh YF, Na SL, Lee KW, et al.
    Sci Rep, 2016 05 31;6:27008.
    PMID: 27243961 DOI: 10.1038/srep27008
    Cladosporium sphaerospermum, a dematiaceous saprophytic fungus commonly found in diverse environments, has been reported to cause allergy and other occasional diseases in humans. However, its basic biology and genetic information are largely unexplored. A clinical isolate C. sphaerospermum genome, UM 843, was re-sequenced and combined with previously generated sequences to form a model 26.89 Mb genome containing 9,652 predicted genes. Functional annotation on predicted genes suggests the ability of this fungus to degrade carbohydrate and protein complexes. Several putative peptidases responsible for lung tissue hydrolysis were identified. These genes shared high similarity with the Aspergillus peptidases. The UM 843 genome encodes a wide array of proteins involved in the biosynthesis of melanin, siderophores, cladosins and survival in high salinity environment. In addition, a total of 28 genes were predicted to be associated with allergy. Orthologous gene analysis together with 22 other Dothideomycetes showed genes uniquely present in UM 843 that encode four class 1 hydrophobins which may be allergens specific to Cladosporium. The mRNA of these hydrophobins were detected by RT-PCR. The genomic analysis of UM 843 contributes to the understanding of the biology and allergenicity of this widely-prevalent species.
  2. Kuan CS, Yew SM, Hooi PS, Lee LM, Ng KP
    Malays J Med Sci, 2017 Oct;24(5):33-43.
    PMID: 29386970 MyJurnal DOI: 10.21315/mjms2017.24.5.4
    Introduction: Acute respiratory tract infections (ARTIs) are a major cause of morbidity and mortality in paediatric patients. Therefore, early detection of the viral aetiologies of ARTIs is essential for patient management and infection control. In this study, we evaluated the performance of a new multiplex polymerase chain reaction (PCR) assay (xTAG Respiratory Viral Panel [RVP] Fast v2) in the detection of respiratory viruses by comparing it with that of viral culture and direct immunofluorescence (IF) staining.

    Methods: Nasopharyngeal swab and aspirate samples were collected prospectively from 199 patients who presented with ARTIs at the University Malaya Medical Centre (UMMC) in Kuala Lumpur, Malaysia during a 10-month period. The PCR assay was conducted in parallel with conventional culture and direct IF staining methods.

    Results: The positive rate of the xTAG RVP Fast v2 assay (78.4%) in detecting respiratory viruses was higher than that of the viral isolation (7.5%) and direct IF (23.1%) methods. Using the xTAG RVP Fast v2 assay, human enterovirus/human rhinovirus (HEV/HRV) was the most frequently detected (46.2%). The xTAG RVP Fast v2 assay revealed mixed infection caused by two or three respiratory viruses in 40 specimens, and these were undetected by the viral isolation and direct IF methods.

    Conclusion: The xTAG RVP Fast v2 assay was superior to conventional methods in the identification of common respiratory viruses, with higher sensitivity and shorter turnaround times for laboratory results.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links