Displaying publications 21 - 40 of 173 in total

Abstract:
Sort:
  1. Arifin, N.M., Pop, I., Nazar, R., Ahmad, S.
    ASM Science Journal, 2010;4(2):149-157.
    MyJurnal
    In this paper, the problem of steady laminar boundary layer flow of an incompressible viscous fluid over a moving thin needle is considered. The governing boundary layer equations were first transformed into non-dimensional forms. These non-dimensional equations were then transformed into similarity equations using the similarity variables, which were solved numerically using an implicit finite-difference scheme known as the Keller-box method. The solutions were obtained for a blunt-nosed needle. Numerical computations were carried out for various values of the dimensionless parameters of the problem which included the Prandtl number Pr and the parameter a representing the needle size. It was found that the heat transfer characteristics were significantly
    influenced by these parameters. However, the Prandtl number had no effect on the flow characteristics due to the decoupled boundary layer equations.
  2. Arifin, N.M., Mokhtar, N.F.M., Nazar, R., Pop, I.
    ASM Science Journal, 2007;1(1):57-62.
    MyJurnal
    Linear stability analysis was used to investigate the onset of Marangoni convection in a two-layer system. The system comprised a saturated porous layer over which was a layer of the same fluid. The fluid was heated from below and the upper free surface was deformable. At the interface between the fluid and the porous layer, the Beavers-Joseph slip condition was used and in the porous medium the Darcy law was employed to describe the flow. Predictions for the onset of convection were obtained from the analysis by the perturbation technique. The effect of surface deformation and depth ratio, z (which is equal to the depth of the fluid layer/depth of the porous layer) on the onset of fluid motion was studied in detail.
  3. Azlinda Abu Bakar, Sallehudin Sulaiman, Baharudin Omar, Rasadah Mat Ali
    ASM Science Journal, 2018;11(2):103-116.
    MyJurnal
    The adverse effects of prolonged and rampant usage of chemical insecticides in controlling the population of vector arthropod have caused the development of resistance among vector populations as well as non-target organism. Application of plant extracts could be alternative sources for mosquito control. The present study assessed larvicidal activities of methanol extracts of leaf and stem of Jacaranda mimosifolia Don (Family: Bignoniaceae), Melaleuca cajuputi Powell (Family: Myrtaceae), Tabebuia chrysantha (Jacq.) Nicholson (Family: Bignoniaceae), Tabebuia pallida (Lindl.) Miers (Family: Bignoniaceae) and Tabebuia rosea Toll (Family: Bignoniaceae) against dengue vectors, Aedes (Diptera: Culicidae) sp. Among plants tested, M. cajuputi exhibited the most effective with the highest mortality against Ae. aegypti and Ae. albopictus. Leaf extracts showed significantly higher larvicidal effects in relative to stem extracts. The findings also revealed that Ae. aegypti is the most susceptible compared to Ae. albopictus. LC50 values of M. cajuputi leaf extracts were 183.35mg/L and 191.82mg/L against Ae. aegypti and Ae. albopictus respectively. These studies suggest leaf extracts of M. cajuputi have moderate potential as larvicidal against vector larvae of Aedes mosquitoes.
  4. Azman, A.R., Sa'dan, A.A., Said, D.N.A., Hafidzi, H.
    ASM Science Journal, 2015;9(2):17-28.
    MyJurnal
    Giving zakat is the third of the five pillars of Islam and it is obligatory. The issues arose when the gantang
    for zakat payment in Malaysia is converted to kilogramme, a metric unit for weight as usually used for
    foods and there was no available standard for gantang used for zakat payment in Malaysia. However,
    this unit is inaccurate since gantang (sa’) is not a measure of weight (mizan) but it is a measure of
    volume (mikyal). Thus, the objective of this research is to study the volume of the sa’ and to calibrate it
    in the correct metric unit for standardisation purpose. A qualitative method was used by calibrating the
    gantang replica at Volume Laboratory, National Metrology Institute of Malaysia and the interviews with
    State Islamic Council, State Zakat Centre and State Mufti Department. From the calibration, the capacity
    of the gantang (sa’) was obtained, and subsequently, the respective capacities for cupak and agricultural
    nisab were calculated. The finding of the research found that the volume of gantang was important in the
    determination of nisab, a minimum amount of crop for a certain cropping season. Hopefully this research
    would be a guideline for all states in Malaysia to be more systematic and efficient for the zakat agriculture
    determination.
  5. Azrul Ghazali, Sivadass Thiruchelvam, Kamal Nasharuddin Mustapha, Ahmad Kamal Kadir, Fatin Faiqa Norkhairi, Nora Yahya, et al.
    ASM Science Journal, 2018;11(2):117-123.
    MyJurnal
    Series of catastrophic floods that we have witnessed over the last decade in Malaysia have necessitated the adoption of reliable early warning system. Ultimate concern during any event of natural or manmade disaster would be information dissemination to lessen the disaster impact on lives and property. The Bertam Valley incident in the wee hours of 23rd October 2013 has been considered as the game changer of how we view the role of vulnerable communities in facing dam-related disasters. Empowerment of local communities has been considered as vital in disaster management, as they are often the first responders to disaster. Local Community-Based Early Warning System (CBEWS) is a smart mechanism operated by the communities. This study revolves around the actual implementation of such system in Cameron Highlands in the effort of increasing human resilience towards damrelated disasters. While establishing the system, the Bertam Valley community has received support from different individuals and organisations. It is paramount that the community develops and maintains close coordination and strong links with these stakeholders. The performance of early warning systems can be evaluated via key parameters such as timeliness, accuracy, reliability, user friendliness, flexibility, and costs & benefits.
  6. Babji, A.S., Ghassem, M., Hong, P.K., Maizatul, S.M.S.
    ASM Science Journal, 2012;6(2):144-147.
    MyJurnal
    Research and development trends will continue to design innovative composite foods in which muscle proteins are combined with non-conventional animal products, non-meat proteins and functional food additives, many of which have lost their original inherent properties and characteristics. Composite food are products with meat, non-meat proteins, fats, carbohydrates and functional ingredients such as pre-emulsion, probiotics, enzymes, bioactives, peptides, hormones, emulsifiers, gelatin, animal fats/oils, alcohol and visceral tissues. Traceability of halal meat raw materials should start at the point of animal breeding, production to the stage of halal slaughter, processing operations and final point of consumption. Traceability of food additives used in the food industry remains a major hurdle for the Muslim community seeking halal food. The processes and technological advancements made in raw material processing, ingredient extractions, modifications, purification and resynthesized into many food ingredients make the question of traceability and solving of the materials and processes that are halal a monumental task. Food is only halal if the entire food chain from farm to table, is processed, handled and stored in accordance with the syariah and/or halal standards or guidelines, such as in the Jabatan Kemajuan Islam Malaysia (JAKIM): General guidelines, Malaysia Standards MS 1500:2009 and Codex Alimentarius (Food Labeling). Here lies the challenge and importance of traceability to verify the ‘wholesomeness’ of the sources of halal raw materials and final meat-based food products.
  7. Babura, Babangida Ibrahim, Mohd Bakri Adam, Anwar Fitrianto, Abdul Rahim, A.S.
    ASM Science Journal, 2018;11(2):86-102.
    MyJurnal
    A boxplot is an exploratory data analysis (EDA) tool for a compact visual display of a distributional summary of a univariate data set. It is designed to capture all typical observations and displays the location, spread, skewness and the tail of the data. The precision of some of this functionality is considered to be more reliable for symmetric data type and thus less appropriate for skewed data such as the extreme data. Many observations from extreme data were mistakenly marked as outliers by the Tukey’s standard boxplot. A new boxplot implementation is presented which adopts a fence definition using the extent of skewness and enhances the plot with additional features such as a quantile region for the parameters of generalized extreme value (GEV) distribution in fitting an extreme data set. The advantage of the new superimposed region was illustrated in term of batch comparison of extreme samples and an EDA tool to determine search region or direction as contained in the optimisation routines of a maximum likelihood parameter estimation of GEV model. A simulated and real-life data were used to justify the advantages of the boxplot enhancement.
  8. Begum, T., Reza, F., Abdullah, J.M.
    ASM Science Journal, 2011;5(2):115-121.
    MyJurnal
    Reflex epilepsy is usually induced by external stimulation, photosensitive epilepsy being the most common. Epilepsy induced by auditory stimulation is rarely studied. There are no currently published magnetoencephalographic (MEG) studies demonstrating the initiation of epileptic neuronal discharges by repeated auditory stimulations in temporal lobe epilepsy (TLE) patients. We retrospectively studied one TLE patient who underwent a MEG study to localize her epileptic focus. Auditory, somatosensory, visual and motor evoked potential studies were performed during the MEG recording. A single dipole method calculated equivalent current dipoles to localize the epileptic source. The least-squares minimization method was used to obtain the optimal solution with goodness-of-fit of greater than 80%. Periodic lateralized epileptiform discharges (PLEDs) were recorded in the temporal region when repeated auditory stimulations were done. We postulated that neuronal cortical suppression occurred during repeated stimulations which provoked epileptiform discharges (PLEDs) without any physical symptoms or aura. It was concluded that repeated stimulations could facilitate epileptiform discharges in focal area/areas in certain subjects.
  9. Bidin, N.
    ASM Science Journal, 2008;2(2):179-182.
    MyJurnal
    The laser technology laboratory (LTL) of the Physics Department, University of Technology Malaysia was established in 1989 to support research and development activities. The laboratory provides activities for short- and long-term projects to serve final year undergraduate and post-graduate students in masters and PhD programmes.
  10. Bong, C.H.J., Mah, D.Y.S, Putuhena, F.J., Said, S., Bustami, R.A.
    ASM Science Journal, 2012;6(1):47-60.
    MyJurnal
    Hydraulics simulation can be used as a supporting tool for planning and developing a framework, such as Integrated Flood Management for river management. To demonstrate this, a hydraulics model for the Sarawak River Basin was run using InfoWorks RS software by Wallingford Software, UK. InfoWorks River Simulation (RS) was chosen because its applicability has been proven and widely used to model Malaysian rivers. The extraction of computed floodwater level and flood maps for different time intervals would produce the rate of floodplain submergence from river bank level. This information could be incorporated into a logical framework to support decisions on flood management measures. Thus, hydraulics models can be used as tools to provide the necessary decision parameters for developing logical frameworks which would act as to guide the planning when it involved various stakeholders’ participation.
  11. Bradley, D.A., Ramli, A.T., Hashim, S., Wagiran, H., Webb, M., Jeynes, C.
    ASM Science Journal, 2010;4(1):15-21.
    MyJurnal
    This research was focused on the thermoluminescence (TL) response of commercially produced single-mode telecommunication optical fibre manufactured by INOCORP (Canada). The fibres were either in the form of pure silica (SiO2) or as SiO2 doped with Ge or Al at concentrations appropriate for total internal reflection, as required for telecommunication purposes. Each of these INOCORP fibres had a core diameter of 125 ± 0.1 μm. It was noted that dopant concentration was not included among the data provided in the accompanying product data sheet. A particularly important parameter for obtaining the highest TL yield in this study was the dopant concentration of the SiO2 fibre. The dopants tended to diffuse during the production of the optical fibre. To obtain this parameter, proton induced X-ray emission (PIXE) analysis was utilised. PIXE while having limited depth resolution could unambiguously identify elements and analyse trace elements with a detection limit approaching μg g–1. For Al-doped fibres, dopant concentrations in the range of 0.98 – 2.93 mol% had been estimated, the equivalent range for Ge-doped fibres was 0.53 – 0.71 mol%. A linear dose response was observed following 2.5 MeV proton irradiation for Ge- and Al-doped fibres for up to 7 min exposure.
  12. C. Devendra
    ASM Science Journal, 2013;7(2):152-165.
    MyJurnal
    Systems perspectives are fundamental in driving technological improvements and yield-enhancing strategies that improve agricultural productivity. These can resolve farmerʼs problems and are important pathways for sustaining food and nutritional security for human welfare in Asia. The essential determinants of this objective are the capacity to efficiently manage the natural resource base (land, crops, animals, and water) to resolve constraints to farming systems, and notably the integration of multiple research and development (R&D) issues through all levels of formal and non-formal learning systems. Both formal and informal education systems are important, with the former relating more to universities and colleges, and the latter to the intermediate level. Graduates from this level have the primary responsibility of introducing improved technologies and change to farmers, mainly along production and disciplinary pathways.The traditional research–extension–farmer model for technology delivery is no longer acceptable, due to “top down” extension functions and prescriptions, ineffectiveness to cope with the dynamics of production systems, complex interactions within the natural resources, effects of climate change and globalisation. There are also reservations on the technical capacity and skills of extension agents, constraints identification, methods for technology diffusion and dissemination, and innovative use of beneficial technological improvements that can directly respond to the needs of small farmers, and impact on subsistence agriculture. Agricultural education and systems perspectives are therefore an overriding compelling necessity which transcends prevailing limitations to waning agriculture and rural growth. Their wider recognition and applications provides an important means to maximise efficiency in the potential use; of the natural resources, increase engagement and investments in agriculture, promote ways to become more self-reliant in the development of crucial new technologies and intensification. These together can meet the challenges of the future and overcome the legacy of continuing poverty, food and nutritional insecurity. Asian farming systems, with their diversity of crops and animals, traditional methods, multiple crop-animal interactions, numerous problems of farmers present increasingly complex issues of natural resource management (NRM) and the environment. Many if not all of these can only be resolved by interdisciplinary R&D, which overcomes a major weakness of many R&D programmes presently and in the past. Improved education and training is a powerful and important driver of community-based participation aimed at enhancing sustainable food security, poverty reduction and social equity in which the empowerment of women in activities that support organising themselves is also an important pathway to enhance self-reliance and their contribution to agriculture. A vision for the future in which improved agricultural education in a systems context can provide the pathway to directly benefit the revitalisation of agriculture and agricultural development is proposed with a three-pronged strategy as follows:
    Define policy for the development of appropriate curricular for formal agricultural education that provides strong multi-disciplinary orientation and improved understanding of the natural resources (land, crops, animals and water) and their interactions
    Organise formal degree education and specialisation at the university level that reflects strong training in understanding of agricultural systems; systems perspectives, methodologies and their application, and
    Define non-formal education and training needs that can be intensified at different levels, including the trainin of trainers as agents of change.
  13. C.H. Asmawati, M.R. Ahmad Ruslan, Y. Zulkiflee, M.N.N. Husna
    ASM Science Journal, 2013;7(2):113-117.
    MyJurnal
    Nowadays, construction and demolition waste has become a major issue to environmental problems faced by many countries. This concern comes from the inefficiencies of waste management which includes the waste generated from construction and demolition activities. In Malaysia, there is a lack of database records on construction waste and this has affected proper management planning of the waste. As there is a lack of policy on construction waste management, control on construction waste disposal is very hazy and this has aggravated environmental problems and exhausted landfill usage and increased illegal dumping. This paper reviews the critical issues on construction waste management and also discusses several estimation models on construction waste generation from several countries. Based on the review, most of the countries faced problems regarding construction waste management and the models developed were considered as one of the methods which could be adopted for better management of construction wastes.
  14. Chai, S.P., Zein, S.H.S., Mohamed, A.R.
    ASM Science Journal, 2008;2(1):57-64.
    MyJurnal
    Since the discovery of carbon nanotubes (CNTs) in 1991, a fundamental question still remained on how to control morphologically the synthesis of CNTs. This task has always been a challenge. In this paper, we report the results that we have published previously with the aim of sharing the possible controlled synthesis approach via this novel production method. Findings demonstrated that various CNTs could be synthesized by using specially developed supported catalysts from the catalytic decomposition of methane. These synthesized CNTs include carbon nanofibres, single-walled and multi-walled CNTs, Y-junction CNTs and CNTs with special morphologies. It was also revealed that catalyst composition and reaction parameters played an important role in controlling the morphology and type of CNTs formed. The synthesis of CNTs with various morphologies is important because this can enrich the nanostructures of the carbon family. This finding also provides useful data for better understanding of the parameters that govern the growth mechanism of CNTs which may be required in the near future for enhanced controlled synthesis of CNTs.
  15. Cheah Y.K., Lee, L.H., Radu, S., Wong, M.C.V.L., Andrade, H.M.
    ASM Science Journal, 2009;3(2):113-120.
    MyJurnal
    The genus Streptomonospora is a group of extremely halophilic filamentous actinomycetes that form a distinct branch in the 16S rRNA gene phylogenetic tree adjacent to the genera Nocardiopsis and Thermobifida, family Norcadiopsaceae. To date, genus Streptomonospora only contain two validly described species which are Streptomonospora salina and Streptomonospora alba. During a biodiversity study on halophilic filamentous actinomycetes from 18 co-ordinates in Barrientos Island, Antarctic, numerous actinomycetes strains were isolated. To identify whether these isolates were members of the genus Streptomonospora, a genus specific primer that allow the rapid detection of the genus Streptomonospora by means of PCR amplification was used. Furthermore molecular cloning was performed to make identical and multiple copies of the target gene. In addition, morphological characteristic identification was performed to validate isolates with positive amplification during PCR.
  16. Chen, Brenna Jia Tian, Chu, Lee Ong, Juliette Babin
    ASM Science Journal, 2017;10(101):1-45.
    MyJurnal
    The global production of aviation fuel, particularly Kerosene Jet A-1, has a market presence of 302.8
    billionlitres per year, of which Malaysia consumes up to 3 billion litres per year. The pressure from
    increasing fuel demand and commitment to reducing CO2 emissions has led to the use of biofuels as
    possible alternatives. Malaysia possesses a relative abundance of lignocellulosic biomass residues and
    thus, has much potential in biofuel development. In this work, Geospatial Information System analysis
    was used to obtain the geo-location biomass supply cost and was then simulated with non-linear cost
    estimation modeling for biorefinery production. The spatial analysis suggested that paddy and oil palm
    trunk could offer significant feedstock volumes at reasonable costs while biomass to fuel conversion
    pathways comparison showed that an “alcohol to jet” route was more feasible among all the alternatives.
    The simulation results indicated that the production cost of a bioethanol refinery had high variability
    due to the geographical heterogeneity of the lignocellulosic biomass resources. At the optimal location
    of paddy residues, utilising rice stalks was substantially cost-efficient compared to other biomass. The
    lowest range of relative production cost was achieved at RM359.11 – RM726.41/million tonnes per
    annum at an input capacity of 1.28 – 2.63 million tonnes. Conversely, using oil palm trunks in the same
    location gave a much more expensive relative production cost of RM472.23 – RM986.63/million tonnes
    yearly with only 0.40 – 1.03 million tonnes of input capacity. This model was able to suggest location
    strategies and cost estimations for biorefineries in Peninsular Malaysia. It is hence, useful as a decision
    and policy making tool for the implementation of biorefineries for aviation uses.
  17. Chu, W.L., Phang, S.M., Lim, S.L., Teoh, M.L., Wong, C.Y.
    ASM Science Journal, 2009;3(2):178-183.
    MyJurnal
    Chlorella is one of the common microalgae found in a wide range of habitats, including Antarctica. Chlorella UMACC 234 is an interesting isolate in the collection of Antarctic microalgae in the University of Malaya algae culture collection (UMACC) as it grows well at temperatures much higher than the ambience. The alga was isolated from snow samples collected from Casey, Antarctica. This study investigates the influence of nitrogen source on the growth, biochemical composition and fatty acid profile of Chlorella UMACC 234. The cultures were grown in Bold’s Basal Medium with 3.0 mM NaNO3, NH4Cl or urea. The cultures grown on NaNO3 attained the highest specific growth rate (μ = 0.43 day–1) while the specific growth rates of those grown on NH4Cl and urea were not significantly different (p > 0.05). The urea-grown cells produced the highest amounts of lipids (25.7% dry weight) and proteins (52.5% dry weight) compared to those grown on other nitrogen sources. The cell numbers attained by the cultures grown at NaNO3 levels between 0.3 and 3.0 mM were similar but decreased markedly at 9.0 mM NaNO3. The fatty acids of Chlorella UMACC 234 were dominated by saturated fatty acids, especially 16:0 and 18:0. The percentage of polyunsaturated fatty acids was very low, especially in cells grown on urea (0.9% total fatty acids). Characterisation of the growth and biochemical composition of this Antarctic Chlorella is important to our studies on the relationship of Chorella isolates from tropical, temperate and polar regions, especially in terms of phylogeny and stress adaptation.
  18. Devaraj, V., Zairossani, M.N.
    ASM Science Journal, 2012;6(1):15-21.
    MyJurnal
    Malaysia is the world’s top manufacturer of examination and surgical natural rubber (NR) gloves, exported mainly to the USA and Europe. The glove manufacturing process yields effluent which must be treated to comply with the stringent regulatory requirements imposed by the Malaysian Department of Environment. To make glove manufacturing an eco-friendly process, efforts are geared towards minimizing and utilizing waste or converting it into raw material for making value-added products. Waste generated from the glove industry is mainly rubber sludge which is obtained from the chemical flocculation stage of the effluent treatment process and consists of mainly rubber, remnants of compounding ingredients and water. R&D work by the Malaysian Rubber Board on waste utilization and resource recovery investigations have revealed many uses for this sludge. This paper briefly outlines only one of the many options available, which is the conversion of the sludge into sludge derived fuel (SDF). Preliminary study has identified three formulations of SDF with calorific values (CV) exceeding 16 000 kJ/kg, matching a good grade coal. This was considered as promising results which warrant explorative work for further increasing the CV of SDF to turn it into a viable fuel substitute in the latex products manufacturing industry and subsequently apply for a Clean Development Mechanism status to generate income.
  19. Devendra, C.
    ASM Science Journal, 2010;4(2):173-184.
    MyJurnal
    In agricultural systems, animals play a very important multifunctional role for developing communities
    throughout the world. This is reflected in the generation of value-added products like meat, milk and eggs for food security; socio-economic benefits like increased income, security and survival, and an infinite variety of services such as the supply of draught power and dung for soil fertility. However, and despite this importance, the situation is awesome since the projected total meat and milk consumption levels in 2020 are far in excess of anticipated supply, and projections of both meat and milk will have to be doubled by 2050 to meet human requirements. Strategies for productivity growth from animals are therefore urgent, and are discussed in the context of the scenario of waning agriculture, extreme poverty and hunger, food crisis, the current contributions from the components of the animal industries, prevailing constraints, opportunities and strategies for improved production. Current trends suggest that the non-ruminant pig and poultry industries will continue to contribute the major share of meat and all of egg production to meet projected human needs. With ruminants by comparison, overall meat production continues to come mainly from the slaughter of numbers. Strategic opportunities exist for maximising productivity in improved production systems. These include targeting rainfed areas, development of small farms, integrated crop-animal systems, intensive application of productivity-enhancing technologies, promoting intensive use of crop residues and expanding the R&D frontiers with interdisciplinarity and farming
    systems perspectives. The issues, together with increased investments and institutional commitment, provide for expanded animal production systems and productivity which can forcefully impact on improved human welfare in Asia in the immediate tomorrow.
  20. Devendra, C.
    ASM Science Journal, 2011;5(2):139-150.
    MyJurnal
    The effects of anticipated climate change and the potential impact on animal production are discussed in the context of varying biophysical features, agro-ecological zones (AEZs), ecosystems, land use, and responses in animal genetic diversity and production. The AEZs in Asia have great diversity in their links to food production in crop-animal small farm systems, the poverty complex and livelihoods of the poor. In these environments. climate change effects on animals were mediated through heat stress, water availability, quantity and quality of the available feed resources, type of production system and productivity. The responses to heat stress are tabulated and they vary according to species, breeds within-species, AEZs, physiological and nutritional status, genetic potential and multifunctionality. Among ruminant production systems, dairy production was especially vulnerable to heat stress. Interestingly in India, buffalo numbers owned largely by the landless and small farmers in the semi-arid and arid regions have grown twice as fast as the buffalo population in the irrigated areas. The implications and strategies to cope with climate change involve mitigation, adaptation and policy. The principal strategy is targetting to the reduce on in greenhouse gas (GHG) emission from the agricultural sector from enteric fermentation and manure, and ways to intensify C sequestration. An important link is that of breeding and conserving indigenous animal genetic resources as a means to mitigate climate change, with associated benefits to the trade of live animals and animal products. Improved integrated tree crops-ruminant systems are an important pathway to enhance C sequestration. The opportunities for research and development (R&D) are enormous and they would need policy support and large investments to provide improved understanding of ways to ensure sustainable animal production systems. Coping with the totality of the effects and impact of climate change constitutes the challenges for agricultural R&D and the improved livelihood of the resource-poor in the future.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links