Displaying publications 21 - 30 of 30 in total

Abstract:
Sort:
  1. Sabetian S, Shamsir MS
    Bioinformation, 2019;15(7):513-522.
    PMID: 31485137 DOI: 10.6026/97320630015513
    Proteins can interact in various ways, ranging from direct physical relationships to indirect interactions in a formation of protein-protein interaction network. Diagnosis of the protein connections is critical to identify various cellular pathways. Today constructing and analyzing the protein interaction network is being developed as a powerful approach to create network pharmacology toward detecting unknown genes and proteins associated with diseases. Discovery drug targets regarding therapeutic decisions are exciting outcomes of studying disease networks. Protein connections may be identified by experimental and recent new computational approaches. Due to difficulties in analyzing in-vivo proteins interactions, many researchers have encouraged improving computational methods to design protein interaction network. In this review, the experimental and computational approaches and also advantages and disadvantages of these methods regarding the identification of new interactions in a molecular mechanism have been reviewed. Systematic analysis of complex biological systems including network pharmacology and disease network has also been discussed in this review.
  2. Bhore SJ
    Bioinformation, 2019;15(8):568-571.
    PMID: 31719766 DOI: 10.6026/97320630015568
    The innovations and developments in microbiology, biomedical sciences, and biotechnology come along with the challenges of biological risk (biorisk). Biorisk is defined as the "combination of the probability of occurrence of harm and the severity of that harm where the source of harm is a biological agent or toxin." Biorisk is a borderless challenge to the global community. Hence, all universities, colleges, centers of bio-excellence, and institutions of higher learning can and should do their bit to educate technical members, academicians, students and stakeholders (LASS) for the efficient and comprehensive biorisk management (BRM) for our and future generations safety and sustainability.
  3. Alagan A, Jantan I, Kumolosasi E, Azmi N
    Bioinformation, 2019;15(8):535-541.
    PMID: 31719762 DOI: 10.6026/97320630015535
    Phyllanthus amarus Schumach. and Thonn. is a wide spread medicinal herb with various traditional uses. It is well documented for its antioxidant, anti-inflammatory, and hepatoprotective activities. Therefore, it is of interest to evaluate the 80% ethanol extract of Phyllanthus amarus (PA) on spatial memory using the 8-radial arm maze (8-RAM) in mice after induction of neuro inflammation by lipopolysaccharide (LPS) in a 14- and 28-days treatment study. LC-MS/MS was performed to profile the chemical composition in PA extract. Mice were treated orally with 5% v/v tween 20, PA extract (100, 200 and 400 mg/kg), or ibuprofen (IBF 40 mg/kg) for 14 and 28 days. All groups were challenged with LPS (1 mg/kg) via intraperitoneal (i.p.) injection a day prior to the 8-RAM task except for the negative control group which received an i.p. injection of saline. Data obtained were analyzed with one-way ANOVA followed by post hoc Dunnett's test (comparison of all groups against vehicle control). Analysis of LC-MS/MS data revealed the presence of 16 compounds in the PA extract. Administration of PA extract at 200 and 400 mg/kg for 14 and 28 days significantly (*P<0.05) decreased the working and reference memory errors against LPS-induced spatial memory impairment. The observed protective action is possibly due to the putative antineuroinflammatory effects of PA. In conclusion, PA extract possess neuroprotective effects against spatial memory impairment mediated by LPS.
  4. Akshayaa L, Lakshmi T, Devaraj E, Roy A, Raghunandhakumar S, Sivaperumal P, et al.
    Bioinformation, 2020;16(11):878-881.
    PMID: 34803262 DOI: 10.6026/97320630016878
    Design and development of effective anti-virals in combating CoVid-19 is a great challenge worldwide. Known drugs such as chloroquine, lopinavir, favipiravir and remdesivir are used in the management of CoVid - 19. It is known that Ivermectin and remdesivir both are effective against filoviruses, paramyxo viruses. Available data also shows that ivermectin and remedesivir repress the replication of SARS-CoV-2. Thus, we document the potential use of ivermectin and remdesivir in the management of CoVid -19.
  5. Ramamoorthy K, Raghunandhakumar S, Anand RS, Paramasivam A, Kamaraj S, Nagaraj S, et al.
    Bioinformation, 2020;16(11):965-973.
    PMID: 34803274 DOI: 10.6026/97320630016965
    Astaxanthin (AXN) is known to have health benefits by epidemiological studies. Therefore, it is of interest to assess the effect of AXN (derived from indigenous unicellular green alga Haematococcus lacustris) to modulate cell cycle arrest, lysosomal acidification and eventually apoptosis using in vitro in A549 lung cancer cells. Natural extracts of astaxanthin were obtained by standardized methods as reported earlier and characterized by standard HPLC and MS. Treatment of A549 cells with AXN (purified fraction) showed significant reduction in cell viability (about 50%) as compared to crude extract at 50µM concentration. Thus, we show the anticancer effects and lysosomal acidification in A549 cells by Astaxanthin from Haematococcus lacustris for further consideration. Together, our results demonstrated the anticancer potential of AXN from Haematococcus lacustris, which is found to be mediated via its ability to induce cell cycle arrest, lysosomal acidification and apoptotic induction.
  6. Jackson K, Devaraj E, Lakshmi T, Rajeshkumar S, Dua K, Chellappan DK, et al.
    Bioinformation, 2020;16(11):817-827.
    PMID: 34803254 DOI: 10.6026/97320630016817
    It is of interest to study the cytotoxicity of silibinin assisted silver nanoparticles in human colorectal (HT-29) cancer cells. Silver nanoparticles were synthesized using silibinin as a reducing agent. The synthesized silibinin assisted silver nanoparticles ( SSNPs) were characterized and analyzed using a transmission electron microscope and spectrophotometer. The SSNPs synthesized in this study are spherical and their size ranges from 10 to 80 nm. HT-29 cells were treated with different concentrations (2, 4, 6, 8 and 10 ng/mL) of SSNPs and cytotoxicity was evaluated. The apoptosis was using flow cytometry. p53 protein expression using western blot. SSNPs are induced a decrease in viability and increased concentration-dependent cytotoxicity in HT-29 cells. SSNPs treatment also caused apoptosis-related morphological changes. SSNPs treatments at 8 and 16 ng/ml showed a prominent apoptotic change i.e., 70.3% and 83.6% respectively, and decreased viability of HT-29 cells 20% and 11.2% respectively as compared to control cells. SSNPs treatments induced p53 expression in HT-29 cells. Data shows that SSNPs have the potential to induce apoptosis in colorectal cancer cells. This provides insights for the further evaluation of SSNPs in fighting colon cancer.
  7. Iyappan P, Bala MD, Sureshkumar M, Veeraraghavan VP, Palanisamy A
    Bioinformation, 2021;17(1):181-191.
    PMID: 34393435 DOI: 10.6026/97320630017181
    Fucoxanthin (Fx) is an active compound commonly found in the many types of seaweed with numerous biological activities. The main goal of this investigation is to explore the effect of Fx against the cell proliferation, apoptotic induction and oxidative stress in the oral squamous (KB) cell line. Cytotoxicity of Fx was determined by MTT assay. The intracellular ROS production, mitochondrial membrane potential (MMP) and apoptosis induction in KB cells were examined through DCFH-DA, Rhodamine-123 and DAPI, and dual staining techniques. Effect of Fx on the antioxidant enzymes and lipid peroxidation in the KB cells was studied through the standard procedures. Fx treated KB cells showed morphological changes and reduced cell survival, which is exhibited by the cytotoxic activity of 50 µM/ml (IC50) Fx against the KB cells. The Fx treatment considerably induced the apoptotosis cells (EB/AO) and decreased the MMP (Rh-123) in KB cells. Further, it was pointed out that there was an increased lipid peroxidation (LPO) with decreased antioxidants (CAT, SOD and GSH). These results concluded that Fx has the cytotoxic effect against KB cells and has the potential to induce the apoptosis via increased oxidative stress. Hence, the Fx can be a promising agent for the treatment of oral cancer and it may lead to the development of cancer therapeutics.
  8. Iyappan P, Bala MD, Sureshkumar M, Veeraraghavan VP, Palanisamy A
    Bioinformation, 2021;17(1):171-180.
    PMID: 34393434 DOI: 10.6026/97320630017171
    The immature lymphoid cells with chromosomal structural and numerical abnormalities cause the acute lymphoblastic leukemia (ALL). This hematologic disorder constitutes about 25% of cancer prognosis among children and adolescents. D-Carvone, a monocyclic monoterpene obtained from the essential oils extracted from plants is reported to possess the various biological activities. The present study was aimed to investigate the anticancer potential of D-Carvone against the human leukemic Molt-4 cells. The cytotoxicity of DCarvone was analyzed by MTT assay. The level of lipid peroxidation and antioxidants were determined. The intracellular ROS, MMP and apoptosis were demonstrated by fluorescent staining techniques. The MTT assay revealed that the D-Carvone treatment suppressed the viability of Molt-4 cells and the IC50 was determined at 20 µM/ml. The D-Carvone treatment was increased the oxidative stress and reduced the level of antioxidants in the Molt-4 cell lines. The increased intracellular ROS, apoptotic cell death, and diminished MMP was noted in the D-Carvone treatment. In the Molt-4 cells, D-carvone induced the apoptosis in a time and dose dependent manner by the activation of caspases-8, -9 and -3. Thus, data provide insights for the clinical application of D-Carvone in the treatment of blood cancer Molt-4 cells. Our study suggests the therapeutic potential D-Carvone for the treatment of leukemia in future.
  9. G Singh P, S Jain A, B Sridhara Setty P, Bv S, S Patil S, P A, et al.
    Bioinformation, 2022;18(8):683-691.
    PMID: 37323557 DOI: 10.6026/97320630018683
    There is a shred of evidence to suggest that Emblica officinalis Gaertn, the botanical name for amla seeds, has greater medicinal potential than amla fruit. We conducted this work to assess the anti-inflammatory, antibacterial, and antioxidant capacities of E. officinalis seed extracts. The bioactive components from the seeds were fractionated using chloroform, hexane, methanol, and diethyl ether, according to the polarity of the solvents. The total amount of phenolic and flavonoid was estimated. Both the reducing power and antioxidant capacities of the extracts were evaluated using the DPPH (1,1-diphenyl-2-picryl-hydrazyl) technique. 15-lipoxygenase (LOX) was inhibited by seed extracts at doses ranging from 5 to 25 micrograms. In silico docking was employed to assess the results. Some human pathogenic microorganisms were tested for their antibacterial activity using the agar disc diffusion method. Escherichia coli, Proteus vulgaris, and Klebsiella pneumonia were inhibited by a methanolic extract with an IC50 value of 58g, making it the most common organic solvent extract. Methanolic extracts also showed good antioxidant and antibacterial activity. Our investigation led us to discover that amla seeds have anti-inflammatory, antioxidant, and antibacterial effects.
  10. Sekimoto O, Chiappelli F
    Bioinformation, 2024;20(1):1-3.
    PMID: 38352906 DOI: 10.6026/973206300200001
    First identified as a pathogen in Malaysia and Singapore in 1999, Nipah virus (NiV) caused nearly 300 human cases and over 100 fatalities. It also killed about 1 million pigs. Three years later (2002), it was reported in Pteropus bats in Malaysia, in Cambodia & Thailand, (2005), and as far as Madagascar (2007) and Ghana (2008). India (Kerala) reported its first human NiV-caused fatalities in September 2023. Taken together, these trends emphasize its public health threat. In humans, NiV infection initially leads to fever, headache, body aches and muscle pain, nausea and vomiting. The symptoms rapidly evolve into sore throat, cough and atypical pneumonia leading to severe respiratory distress. The cadre of NiV-induced pathology (Nipah disease, NiD) then includes severe dizziness and drowsiness, progressive alteration in cognition and consciousness, acute encephalitis and seizures. Public health protocols (e.g., mask-wearing, quarantine), essential to contain and control CoViD-19, seem insufficient to contain NiD spread because NiV transmission occurs primarily via direct contacts with body fluids of infected carriers, but presumably not by airborne transmission. As in the case of SARS-C0V2, health care providers (i.e., physicians, dentists, nurses, dental assistants) are greatest risks not only of contracting but of spreading NiV infection. NiV is a high-pathogenicity pathogen, against which, at present, we have no anti-viral medications or preventive vaccine. Taken together, the evidence to date heightens the threat of an upcoming NiD pandemic.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links