Displaying publications 21 - 40 of 77 in total

Abstract:
Sort:
  1. Saat MN, Mohamad Annuar MS
    Biotechnol Appl Biochem, 2020 May;67(3):354-365.
    PMID: 31746015 DOI: 10.1002/bab.1859
    One-pot synthesis of sugar-functionalized oligomeric caprolactone was carried out by lipase-catalyzed esterification of ε-caprolactone (ECL) with methyl-d-glucopyranoside (MGP) followed by the elongation of functionalized oligomer chain. Functionalization was performed in a custom-fabricated glass reactor equipped with Rushton turbine impeller and controlled temperature at 60 °C using tert-butanol as reaction medium. The overall reaction steps include MGP esterification of ECL monomer and its subsequent elongation by free 6-hydroxyhexanoate monomer units. A ping-pong bi-bi mechanism without ternary complex was proposed for esterification of ECL and MGP with apparent values of kinetic constant, namely maximal velocity (Vmax ), Michaelis constant for MGP (KmMGP ), and Michaelis constant for ECL (KmECL ) at 3.848 × 10-3  M H-1 , 8.189 × 10-2  M, and 6.050 M, respectively. Chain propagation step of MGP-functionalized ECL oligomer exhibits the properties of living polymerization mechanism. Linear relationship between conversion (%) and number average molecular weight, Mn (g mol-1 ), of functionalized oligomer was observed. Synthesized functionalized oligomer showed narrow range of molecular weight from 1,400 to 1,600 g mol-1 with more than 90% conversion achieved. Structural analysis confirmed the presence of covalent bond between the hydroxyl group in MGP with carboxyl end group of ECL oligomer.
  2. Gao M, Sun Y, Wang Q, Ma S, Guo X, Zhou L, et al.
    PMID: 34523748 DOI: 10.1002/bab.2254
    Nanomaterial on the sensing area elevates the biomolecular immobilization by its right orientation with a proper alignment, and zeolite is one of the suitable materials. In this research, the zeolite nanoparticles were synthesized using rice hush ash as the basic source and the prepared zeolite by the addition of sodium silicate was utilized to attach antibody as a probe on a gap-fingered dielectrode surface to identify the colon cancer biomarker, "colon cancer-secreted protein-2" (CCSP-2). Field Emission Scanning Electron Microscopy and Field Emission Transmission Electron Microscopy images confirmed the size of the nanoparticle to be ∼15 nm and the occurrence of silica and alumina. Zeolite was modified on the electrode surface through the amine linker, and then anti-CCSP-2 was attached by an aldehyde linker. On this surface, CCSP-2 was detected and attained the detection limit to be 3 nM on the linear regression curve with 3-5 nM of CCSP-2. Estimated by the determination coefficient of y = 2.3952x - 4.4869 and R2 = 9041 with 3δ (n = 3). In addition, control proteins did not produce the notable current response representing the specific sensing of CCSP-2. This research is suitable to identify CCSP-2 at a lower level in the bloodstream under the physiological condition of a colon cancer patient.
  3. Abulaiti A, Salai A, Sun X, Yibulayin W, Gao Y, Gopinath SCB, et al.
    PMID: 33576539 DOI: 10.1002/bab.2122
    Non-small cell lung cancer (NSCLC) incited by epidermal growth factor receptor (EGFR) mutation makes up ∼85% of lung cancer diagnosed and death cases worldwide. The presented study introduced an alternative approach in detecting EGFR mutation using nano-silica integrated with polydimethylsiloxane (PDMS) polymer on interdigitated electrode (IDE) sensor. A 400 μm gap-sized aluminum IDE was modified with nano-polymer layer, which was made up of silica nanoparticles and PDMS polymer. IDE and PDMS-coated IDE (PDMS/IDE) were imaged using electron microscopes that reveals its smooth and ideal sensor morphology. The nano-silica-integrated PDMS/IDE surface was immobilized with EGFR probe and target to specify the lung cancer detection. The sensor specificity was justified through the insignificant current readouts with one-base mismatch and noncomplementary targets. The sensitivity of nano-silica-integrated PDMS/IDE was examined with mutant target spiked in human serum, where the resulting current affirms the detection of EGFR mutation. Based on the slope of the calibration curve, the sensitivity of nano-silica-integrated PDMS/IDE was 2.24E-9 A M-1 . The sensor recognizes EGFR mutation lowest at 1 aM complementary mutant target; however, the detection limit obtained based on 3σ calculation is 10 aM with regression value of 0.97.
  4. Anis SNS, Mohd Annuar MS, Simarani K
    Biotechnol Appl Biochem, 2018 Nov;65(6):784-796.
    PMID: 29806235 DOI: 10.1002/bab.1666
    Biosynthesis and in vivo depolymerization of intracellular medium-chain-length poly-3-hydroxyalkanoates (mcl-PHA) in Pseudomonas putida Bet001 grown on lauric acid were studied. Highest mcl-PHA fraction (>50 % of total biomass) and cell concentration (8 g L-1 ) were obtained at carbon-to-nitrogen (C/N) ratio 20, starting cell concentration 1 g L-1 , and 48 H fermentation. The mcl-PHA comprised of 3-hydroxyhexanoate (C6 ), 3-hydroxyoctanote (C8 ), 3-hydroxydecanoate (C10 ), and 3-hydroxydodecanoate (C12 ) monomers. In vivo action was studied in a mineral liquid medium without carbon source, and in different buffer solutions with varied pH, molarity, ionic strength, and temperature. The monomer liberation rate reflected the mol percentage distribution of the initial polymer subunit composition. Rate and percentage of in vivo depolymerization were highest in 0.2 M Tris-HCl buffer (pH 9, strength = 0.2 M, 30 °C) at 0.21 g L-1  H-1 and 98.6 ± 1.3 wt%, respectively. There is a congruity vis-à-vis to specific buffer type, molarity, pH, ionic strength, and temperature values for superior in vivo depolymerization activities. Direct products from in vivo depolymerization matched the individual monomeric composition of native mcl-PHA. It points to exo-type reaction for the in vivo process, and potential biological route to chiral molecules.
  5. Halim FS, Parmin NA, Hashim U, Gopinath SCB, Dahalan FA, Zakaria II, et al.
    PMID: 34378814 DOI: 10.1002/bab.2239
    An oligonucleotide DNA probe has been developed for the application in the DNA electrochemical biosensor for the early diagnosis of coronavirus disease (COVID-19). Here, the virus microRNA from the N-gene of severe acute respiratory syndrome-2 (SARS-CoV-2) was used for the first time as a specific target for detecting the virus and became a framework for developing the complementary DNA probe. The sequence analysis of the virus microRNA was carried out using bioinformatics tools including basic local alignment search tools, multiple sequence alignment from CLUSTLW, microRNA database (miRbase), microRNA target database, and gene analysis. Cross-validation of distinct strains of coronavirus and human microRNA sequences was completed to validate the percentage of identical and consent regions. The percent identity parameter from the bioinformatics tools revealed the virus microRNAs' sequence has a 100% match with the genome of SARS-CoV-2 compared with other coronavirus strains, hence improving the selectivity of the complementary DNA probe. The 30 mer with 53.0% GC content of complementary DNA probe 5' GCC TGA GTT GAG TCA GCA CTG CTC ATG GAT 3' was designed and could be used as a bioreceptor for the biosensor development in the clinical and environmental diagnosis of COVID-19.
  6. Pandian K, Kalayarasi J, Gopinath SCB
    Biotechnol Appl Biochem, 2022 Dec;69(6):2766-2779.
    PMID: 35287249 DOI: 10.1002/bab.2321
    This study presents a novel sulfur-doped graphitic carbon nitride (S@g-C3 N4 ) with a wider potential range as electrocatalyst for electrochemical sensor application. The S@g-C3 N4 nanosheets were successfully prepared with a ball milling method by mixing appropriate molar concentration required precursors. The as-synthesized heteroatom-doped graphitic carbon nitride is characterized by spectroscopic techniques including PL, DRS-UV, FT-IR, and Brunauer-Emmett-Teller equation. The morphological features were studied by FE-SEM and HR-TEM analysis. Chit-S@g-C3 N4 -modified glassy carbon electrode (GCE) was employed for the electrochemical detection of omeprazole (OMZ) use in drug formulations. We have noted an oxidation peak current response at a potential of +0.8 V versus Ag/AgCl in PBS medium (0.1 M, pH 7.0). Differential pulse voltammetry amperometry experimental method can be used to measure the concentration of OMZ for quantitative studies in known samples. Under the optimized experimental condition, the calibration plot was constructed by plotting the peak currents versus OMZ in the linear ranges from 6.0 × 10-7 to 26 × 10-5  M. The linear regression equation is estimated to be Ip (μA) = 0.9518 (C/μM) + 0.3340 with a good correlation coefficient of 0.9996. The lower determination limit was found to be 20 nM and the current sensitivity was calculated (31.722 μA μM-1  cm-2 ). The developed sensor was utilized successfully to determine the OMZ concentration in drug formulations and biological fluids. These results revealed that the Chit-S@g-C3 N4 -modified GCE showed excellent electroanalytical performance for the detection of OMZ at a low LOD, wider linear range, high sensitivity, good reproducibility, long-term storage stability, and selectivity with an acceptable relative standard deviation value.
  7. Mydin RBSMN, Mahboob A, Sreekantan S, Saharudin KA, Qazem EQ, Hazan R, et al.
    Biotechnol Appl Biochem, 2023 Jun;70(3):1072-1084.
    PMID: 36567620 DOI: 10.1002/bab.2421
    In biomedical implant technology, nanosurface such as titania nanotube arrays (TNA) could provide better cellular adaptation, especially for long-term tissue acceptance response. Mechanotransduction activities of TNA nanosurface could involve the cytoskeleton remodeling mechanism. However, there is no clear insight into TNA mechano-cytoskeleton remodeling activities, especially computational approaches. Epithelial cells have played critical interface between biomedical implant surface and tissue acceptance, particularly for long-term interaction. Therefore, this study investigates genomic responses that are responsible for cell-TNA mechano-stimulus using epithelial cells model. Findings suggested that cell-TNA interaction may improve structural and extracellular matrix (ECM) support on the cells as an adaptive response toward the nanosurface topography. More specifically, the surface topography of the TNA might improve the cell polarity and adhesion properties via the interaction of the plasma membrane and intracellular matrix responses. TNA nanosurface might engross the cytoskeleton remodeling activities for multidirectional cell movement and cellular protrusions on TNA nanosurface. These observations are supported by the molecular docking profiles that determine proteins' in silico binding mechanism on TNA. This active cell-surface revamping would allow cells to adapt to develop a protective barrier toward TNA nanosurface, thus enhancing biocompatibility properties distinctly for long-term interaction. The findings from this study will be beneficial toward nano-molecular knowledge of designing functional nanosurface technology for advanced medical implant applications.
  8. Ahmad T, Bustam MA, Irfan M, Moniruzzaman M, Asghar HMA, Bhattacharjee S
    Biotechnol Appl Biochem, 2019 Jul;66(4):698-708.
    PMID: 31172593 DOI: 10.1002/bab.1787
    Phytosynthesis of gold nanoparticles (AuNPs) has achieved an indispensable significance due to the diverse roles played by biomolecules in directing the physiochemical characteristics of biosynthesized nanoparticles. Therefore, the precise identification of key bioactive compounds involved in producing AuNPs is vital to control their tunable characteristics for potential applications. Herein, qualitative and quantitative determination of key biocompounds contributing to the formation of AuNPs using aqueous Elaeis guineensis leaves extract is reported. Moreover, roles of phenolic compounds and flavonoids in reduction of Au3+ and stabilization of AuNPs have been elucidated by establishing a reaction mechanism. Fourier-transform infrared spectroscopy (FTIR) showed shifting of O─H stretching vibrations toward longer wavenumbers and C═O toward shorter wavenumbers due to involvement of polyphenolic compounds in biosynthesis and oxidation of polyphenolic into carboxylic compounds, respectively, which cape nanoparticles to inhibit the aggregation. Congruently, pyrolysis-gas chromatography-mass spectrometry revealed the major contribution of polyphenolic compounds in the synthesis of AuNPs, which was further endorsed by reduction of total phenolic and total flavonoids contents from 48.08 ± 1.98 to 9.59 ± 0.92 mg GAE/g and 32.02 ± 1.31 to 13.8 ± 0.97 mg CE/g within 60 Min, respectively. Based on experimental results, reaction mechanism explained the roles of phenolic compounds and flavonoids in producing spherical-shaped AuNPs.
  9. Lau MF, Chua KH, Sabaratnam V, Kuppusamy UR
    Biotechnol Appl Biochem, 2021 Aug;68(4):902-917.
    PMID: 32856730 DOI: 10.1002/bab.2013
    Ganoderma neo-japonicum is a well-known medicinal mushroom in Asian countries. However, scientific validations on its curative activities are confined to cirrhosis and diabetes. In this study, the anticancer properties of G. neo-japonicum were evaluated using cellular and computational models. The ethanolic extract (EtOH) with a promising inhibitory effect was fractionated into four different fractions: hexane (Hex), chloroform (Chl), butanol (Btn), and aqueous (Aq). The active fractions were then subjected to cell apoptosis assessment and phytochemical profiling. Molecular docking was conducted to elucidate the affinity of selected constituents towards antiapoptotic Bcl-2 protein. The butanol fraction showed the highest antioxidant activities as well as total phenolic content. Both hexane and chloroform fractions exerted a potent cytotoxic effect on colonic carcinoma cells through the induction of apoptosis. Phytochemical analysis revealed that the chloroform fraction is terpenoid enriched whereas the hexane fraction comprises predominantly sterol constituents. Stellasterol and 1,25-dihydroxyvitamin D3 3-glycoside were demonstrated to have a high affinity towards Bcl-2 protein. Overall, G. neo-japonicum can be considered as a compelling therapeutic candidate for cancer treatment.
  10. Ali I, Wei DQ, Khan A, Feng Y, Waseem M, Hussain Z, et al.
    Biotechnol Appl Biochem, 2024 Apr;71(2):402-413.
    PMID: 38287712 DOI: 10.1002/bab.2548
    Malonyl-CoA serves as the main building block for the biosynthesis of many important polyketides, as well as fatty acid-derived compounds, such as biofuel. Escherichia coli, Corynebacterium gultamicum, and Saccharomyces cerevisiae have recently been engineered for the biosynthesis of such compounds. However, the developed processes and strains often have insufficient productivity. In the current study, we used enzyme-engineering approach to improve the binding of acetyl-CoA with ACC. We generated different mutations, and the impact was calculated, which reported that three mutations, that is, S343A, T347W, and S350W, significantly improve the substrate binding. Molecular docking investigation revealed an altered binding network compared to the wild type. In mutants, additional interactions stabilize the binding of the inner tail of acetyl-CoA. Using molecular simulation, the stability, compactness, hydrogen bonding, and protein motions were estimated, revealing different dynamic properties owned by the mutants only but not by the wild type. The findings were further validated by using the binding-free energy (BFE) method, which revealed these mutations as favorable substitutions. The total BFE was reported to be -52.66 ± 0.11 kcal/mol for the wild type, -55.87 ± 0.16 kcal/mol for the S343A mutant, -60.52 ± 0.25 kcal/mol for T347W mutant, and -59.64 ± 0.25 kcal/mol for the S350W mutant. This shows that the binding of the substrate is increased due to the induced mutations and strongly corroborates with the docking results. In sum, this study provides information regarding the essential hotspot residues for the substrate binding and can be used for application in industrial processes.
  11. Yin M, Xu D, Yu J, Huang S, Gopinath SCB, Kang P
    PMID: 34453342 DOI: 10.1002/bab.2246
    Anesthesia-related drugs cause various side effects and health-related illnesses after surgery. In particular, neurogenerative disorder is a common problem of anesthesia-related drugs. A patient gets anesthesia as a requirement of the preoperative evaluation to diagnose the medical illness, which is caused by anesthetic drug treatment. Different blood-based biomarkers help in identifying the changes appearing in patients after anesthesia treatment. Among them, tau protein is a sensitive biomarker of neurodegenerative diseases, and the fluctuations in tau proteins are highly associated with various diseases. Furthermore, researchers have found unstable levels of tau protein after the anesthesia process. The current research has focused on quantifying tau protein via impedance spectroscopy to identify the problems caused by anesthesia-related drugs. An impedance spectroscopy electrode was modified into a multiwalled carbon nanotube, and an amine-ended aptamer was then attached. This electrode surface was used to quantify the tau protein level and reached the detection limit of 1 fM. The determination coefficient was found to be y = 369.93x + 1144.9, with R2 = 0.9846 in the linear range of 1 fM-1 nM. Furthermore, tau protein spiked human serum was clearly identified on the immobilized aptamer surface, indicating the specific detection.
  12. Wang S, Su S, Yu C, Gopinath SCB, Yang Z
    Biotechnol Appl Biochem, 2021 Aug;68(4):726-731.
    PMID: 32621620 DOI: 10.1002/bab.1981
    The urinary C-terminal telopeptide fragment of type II collagen (uCTX-II) has been reported as the efficient blood-based biomarker for osteoarthritis, which affects knees, hands, spine, and hips. This study reports a sensing strategy with antibody-conjugated gold nanoparticles (GNP) on an interdigitated electrode (IDE) to determine uCTX-II. The GNP-antibody complex was chemically immobilized on the IDE surface through the amine linker. uCTX-II was determined by monitoring the alteration in current upon interacting the GNP-complexed antibody. This strategy was improved the detection by attracting higher uCTX-II molecules, and the detection limit falls in the range of 10-100 pM with an acceptable regression value [y = 0.6254x - 0.4073, R² = 0.9787]. The sensitivity of the detection was recognized at 10 pM. Additionally, upon increasing the uCTX-II concentration, the current changes were increased in a linear fashion. Control detection with nonimmune antibody and control protein do not increase the current level, confirming the specific detection of uCTX-II. This method of detection helps in diagnosing osteoarthritis and its follow-up treatment.
  13. Zhao X, Gopinath SCB, Zhao W
    Biotechnol Appl Biochem, 2023 Apr;70(2):502-508.
    PMID: 35661417 DOI: 10.1002/bab.2372
    Abdominal aortic aneurysm (AAA), a medical complication, occurs when the aortic area becomes swollen and very large. It is mandatory to identify AAA to avoid the breakdown of aneurysms. C-reactive protein (CRP) has been recognized as one of the biomarkers for identifying AAA due to the possibility of CRP produced in vascular tissue, which contributes to the formation of an aneurysm, and it is elevated in patients with a ruptured AAA. This research work was designed to develop an immunosensor on a multiwalled carbon nanotube (MWCNT)-modified surface to quantify the CRP level. Anti-CRP specificity was constructed on the MWCNT surface through a silane linker to interact with CRP. The detection limit of CRP was calculated as 100 pM with an R2 (determination coefficient) value of 0.9855 (y = 2.3446x - 1.9922) on a linear regression graph. The dose-dependent linear pattern was registered from 200 to 3000 pM and attained the saturation level during binding at 3000 pM. Furthermore, serum-spiked CRP showed a clear increase in the current response, proving the specific recognition of CRP in biological samples. This designed biosensor identifies CRP at a lower level and can help diagnose AAA.
  14. Bi H, Bian P, Gopinath SCB, Marimuthu K, Lv G, Yin X
    PMID: 34622990 DOI: 10.1002/bab.2267
    Osteoporosis, a bone disease is caused by the deterioration of bone and shows an enhanced risk of bone fracture and decreasing bone mineral density. Unfortunately, the available radiological techniques are expensive, and have disadvantages such as radiation intake, need a specialist to handle the instrument, and so forth. This research is focused to develop a point-of-care system to identify osteocalcin on current-volt sensor, which helps to diagnose the bone metabolism and prognostics. Antiosteocalcin antibody was attached on the electrode through the silane-modified iron material. The antibody-immobilized sensing surface was utilized to identify the level of osteocalcin and the detection limit of 100 pg/ml reached on linear concentrations of 0.01-3000 ng/ml. Calculations were made by triplicates (n = 3; 3δ) on the determination coefficient of y = 0.2637x-0.6012; R2 = 0.9319. Further, control proteins failed to bind with immobilized antibody, confirmed by the specific osteocalcin detection. This research is to identify the osteoporosis biomarker and to help determine the conditions with osteoporosis.
  15. Haniff AN, Gam LH
    Biotechnol Appl Biochem, 2016 Mar;63(2):266-72.
    PMID: 25640279 DOI: 10.1002/bab.1357
    Smoking, passive smoking, and nonsmoking are conditions that give different degrees of stress to the body. In this study, a proteomic technique was used to analyze differentially urinary protein expression between these three groups of subjects. Urinary proteins were precipitated using ammonium sulfate followed by separation according to molecular weights using SDS-PAGE. The gel was stained by Coommassie blue, and the image of the gel was captured for the comparison study. The protein bands that were consistently detected but expressed at different intensity between the smokers and nonsmokers were targeted for further analysis. Three targeted protein bands were excised from the gel, consisting of a unique protein band of smokers and a pair of differentially expressed protein bands from smokers and nonsmokers. The proteins were digested in gel by trypsin. The tryptic peptides were analyzed with ultra performance liquid chromatography-tandem mass spectrometry. Protein identity was determined by the product ion spectrum in the MS/MS scan. Four unique proteins from the smokers, namely, pancreatic alpha amylase, proepidermal growth factor, protein 4.1, and prostatic acid phosphatase, were found to be potential urinary biomarkers to indicate smoking status of a person.
  16. Qin D, Gong Q, Li X, Gao Y, Gopinath SCB, Chen Y, et al.
    Biotechnol Appl Biochem, 2023 Apr;70(2):553-559.
    PMID: 35725894 DOI: 10.1002/bab.2377
    Mycoplasma pneumoniae is a highly infectious bacterium and the major cause of pneumonia especially in school-going children. Mycoplasma pneumoniae affects the respiratory tract, and 25% of patients experience health-related problems. It is important to have a suitable method to detect M. pneumoniae, and gold nanoparticle (GNP)-based colorimetric biosensing was used in this study to identify the specific target DNA for M. pneumoniae. The color of GNPs changes due to negatively charged GNPs in the presence of positively charged monovalent (Na+ ) ions from NaCl. This condition is reversed in the presence of a single-stranded oligonucleotide, as it attracts GNPs but not in the presence of double-stranded DNA. Single standard capture DNA was mixed with optimal target DNA that cannot be adsorbed by GNPs; under this condition, GNPs are not stabilized and aggregate at high ionic strength (from 100 mM). Without capture DNA, the GNPs that were stabilized by capture DNA (from 1 μM) became more stable under high ionic conditions and retaining their red color. The GNPs turned blue in the presence of target DNA at concentrations of 1 pM, and the GNPs retained a red color when there was no target in the solution. This method is useful for the simple, easy, and accurate identification of M. pneumoniae target DNA at higher discrimination and without involving sophisticated equipment, and this method provides a diagnostic for M. pneumoniae.
  17. Wang HY, Chen XC, Yan ZH, Tu F, He T, Gopinath SCB, et al.
    PMID: 34664729 DOI: 10.1002/bab.2270
    By studying the expression in patients and cell modeling in vitro, antimicrobial peptides for Klebsiella were screened. Killing curve and membrane permeability experiments are used to study the antibacterial effect of antimicrobial peptides in vitro. Cytotoxicity-related indicators including lipopolysaccharide (LPS), capsule polysaccharide (CPS), and outer membrane protein expression were measured. Intranasal inoculation of pneumoconiosis was used to construct a mouse infection model, and the survival rate and cytokine expression level were tested. Human neutrophil peptide 1 (HNP-1) showed a significant antibacterial effect, which improved the permeability of the outer membrane of K. pneumoniae. Moreover, HNP-1 decreased LPS, CPS content, and outer membrane proteins. K. pneumoniae infection decreased antimicrobial peptide, oxidative stress, and autophagy-related genes, while HNP-1 increased these genes. After coculture with macrophages, the endocytosis of macrophages is enhanced and the bacterial load is greater in the K. pneumoniae + peptide group. Besides, higher levels of pp38 and pp65 in the K. pneumoniae + peptide group. HNP-1 rescued the cytotoxicity induced by K. pneumoniae. The survival rate is significantly improved after K. pneumoniae is treated by HNP-1. All cytokines in the peptide group were significantly higher. HNP-1 promotes immune sterilization by reducing the virulence of multidrug-resistant K. pneumoniae and increasing the ability of macrophages.
  18. Ng WK, Lim TS, Lai NS
    Biotechnol Appl Biochem, 2018 Jul;65(4):547-553.
    PMID: 29280199 DOI: 10.1002/bab.1636
    A critical challenge in producing an antibody-based assay with the highest reproducibility and sensitivity is the strategy to immobilize antibodies to solid phase. To date, numerous methods of antibody immobilization were reported but each was subjected to its advantages and limitations. The current study proposes a new potential antibody binding protein, the human neonatal fragment crystallizable (Fc) receptor. This protein has shown its high affinity to the Fc of antibody either in vivo or in vitro. Human neonatal Fc receptor is a heterodimer constructed by p51 α-heavy chain and β2-microglobulin light chain; however, the binding sites toward the antibody are located in the p51 α-heavy chain. Hence, vector cloning and recombinant protein expression were carried out to express the p51 α-heavy chain of the human neonatal Fc receptor (hFcRn-α). The recombinant protein expressed, hFcRn-α, was adopted to pin rabbit IgG against hepatitis B virus surface antigen to a solid phase. A sandwich enzyme-linked immunosorbent assay was further developed to evaluate the efficiency of hFcRn-α-directed immobilization in antigen detection. The result was compared with the conventional physical adsorption method. The findings demonstrated that human neonatal Fc receptor was efficient in pinning antibodies and generating higher signals compared with the physical adsorption of antibody.
  19. Vasudevan M, Tai MJY, Perumal V, Gopinath SCB, Murthe SS, Ovinis M, et al.
    Biotechnol Appl Biochem, 2021 Dec;68(6):1386-1395.
    PMID: 33140493 DOI: 10.1002/bab.2060
    Acute myocardial infarction (AMI) is one of the leading causes of death worldwide. Cardiac troponin I (cTn1) is a commonly used biomarker for the diagnosis of AMI. Although there are various detection methods for the rapid detection of cTn1 such as optical, electrochemical, and acoustic techniques, electrochemical aptasensing techniques are commonly used because of their ease of handling, portability, and compactness. In this study, an electrochemical cTn1 biosensor, MoS2 nanoflowers on screen-printed electrodes assisted by aptamer, was synthesized using hydrothermal technique. Field emission scanning electron microscopy revealed distinct 2D nanosheets and jagged flower-like 3D MoS2 nanoflower structure, with X-ray diffraction analysis revealing well-stacked MoS2  layers. Voltammetry aptasensing of cTn1 ranges from 10 fM to 1 nM, with a detection limit at 10 fM and a sensitivity of 0.10 nA µM-1  cm-2 . This is a ∼fivefold improvement in selectivity compared with the other proteins and human serum. This novel aptasensor retained 90% of its biosensing activity after 6 weeks with a 4.3% RSD and is a promising high-performance biosensor for detecting cTn1.
  20. Guo S, Li Y, Li R, Zhang P, Wang Y, Gopinath SCB, et al.
    Biotechnol Appl Biochem, 2020 May;67(3):383-388.
    PMID: 31876964 DOI: 10.1002/bab.1877
    Abdominal aortic aneurysm (AAA) is a serious, life-threatening vascular disease that presents as an enlarged area of the aorta, which is the main artery that carries blood away from the heart. AAA may occur at any location in the aorta, but it is mainly found in the abdominal region. A ruptured AAA causes serious health issues, including death. Traditional imaging techniques, such as computed tomography angiogram, magnetic resonance imaging, and ultrasound sonography, have been used to identify AAAs. Circulating biomarkers have recently become attractive for diagnosing AAAs due to their cost-effectiveness compared to imaging. Insulin-like growth factor 1 (IGF-1), a secreted hormone vital for human atherosclerotic plaque stability, has been found to be an efficient biomarker for AAA identification. In this report, immunosensing was performed by using an InterDigitated electrode (IDE) sensor to detect circulating levels of IGF-1. The detection limit of IGF-1 was found to be 100 fM with this sensor. Moreover, related protein controls (IGF-2 and IGFBP3) were not detected with the same antibody, indicating selective IGF-1 detection. Thus, immunosensing by using an IDE sensor may help to effectively diagnose AAAs and represents a basic platform for further development.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links