Affiliations 

  • 1 Department of Inspection, General Hospital of TISCO, Taiyuan, 030008, China
  • 2 Department of Nuclear Medicine, Taiyuan People's Hospital, Taiyuan, China
  • 3 Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
  • 4 Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
  • 5 Department of Inspection, First Hospital of Shanxi Medical University, Taiyuan, China
Biotechnol Appl Biochem, 2023 Apr;70(2):553-559.
PMID: 35725894 DOI: 10.1002/bab.2377

Abstract

Mycoplasma pneumoniae is a highly infectious bacterium and the major cause of pneumonia especially in school-going children. Mycoplasma pneumoniae affects the respiratory tract, and 25% of patients experience health-related problems. It is important to have a suitable method to detect M. pneumoniae, and gold nanoparticle (GNP)-based colorimetric biosensing was used in this study to identify the specific target DNA for M. pneumoniae. The color of GNPs changes due to negatively charged GNPs in the presence of positively charged monovalent (Na+ ) ions from NaCl. This condition is reversed in the presence of a single-stranded oligonucleotide, as it attracts GNPs but not in the presence of double-stranded DNA. Single standard capture DNA was mixed with optimal target DNA that cannot be adsorbed by GNPs; under this condition, GNPs are not stabilized and aggregate at high ionic strength (from 100 mM). Without capture DNA, the GNPs that were stabilized by capture DNA (from 1 μM) became more stable under high ionic conditions and retaining their red color. The GNPs turned blue in the presence of target DNA at concentrations of 1 pM, and the GNPs retained a red color when there was no target in the solution. This method is useful for the simple, easy, and accurate identification of M. pneumoniae target DNA at higher discrimination and without involving sophisticated equipment, and this method provides a diagnostic for M. pneumoniae.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.