Displaying publications 1 - 20 of 431 in total

Abstract:
Sort:
  1. Kong W, Koh A, Abd-Shukor R
    Superkonduktor suhu tinggi berasaskan sistem (Tl0.85Cr0.15)Sr2CaCu2O7-Agx (Tl1212) dengan komposisi x = 0.0, 0.01, 0.02, 0.03 dan 0.05 telah disediakan dengan kaedah tindak balas keadaan pepejal. Rintangan elektrik terhadap suhu telah diukur dengan kaedah penduga empat titik. Suhu genting mula, Tc-mula bagi sistem Tl1212 tanpa penambahan nano Ag adalah 113 K. Penambahan nano Ag menurunkan suhu genting sampel. Corak pembelauan sinar-X menunjukkan bahawa semua sampel mempunyai fasa dominan 1212. Sampel x = 0.02 mempunyai peratusan fasa 1212 yang tertinggi iaitu 87%.
    Matched MeSH terms: Metal Nanoparticles
  2. Abedini A, Bakar AA, Larki F, Menon PS, Islam MS, Shaari S
    Nanoscale Res Lett, 2016 Dec;11(1):287.
    PMID: 27283051 DOI: 10.1186/s11671-016-1500-z
    This paper focuses on the recent advances on radiolysis-assisted shape-controlled synthesis of noble metal nanostructures. The techniques and protocols for producing desirable shapes of noble metal nanoparticles are discussed through introducing the critical parameters which can influence the nucleation and growth mechanisms. Nucleation rate plays a vital role on the crystallinity of seeds while growth rate of different seeds' facets determines the final shape of resultant nanoparticles. Nucleation and growth rate both can be altered with factors such as absorbed dose, capping agents, and experimental environment condition to control the final shape. Remarkable physical and chemical properties of synthesized noble metal nanoparticles by controlled morphology have been systematically evaluated to fully explore their applications.
    Matched MeSH terms: Metal Nanoparticles
  3. Yusof NS, Ashokkumar M
    Chemphyschem, 2015 Mar 16;16(4):775-81.
    PMID: 25598360 DOI: 10.1002/cphc.201402697
    The sonochemical synthesis of gold nanoparticles (GNPs) with different shapes and size distributions by using high-intensity focused ultrasound (HIFU) operating at 463 kHz is reported. GNP formation proceeds through the reduction of Au(3+) to Au(0) by radicals generated by acoustic cavitation. TEM images reveal that GNPs show irregular shapes at 30 W, are primarily icosahedral at 50 W and form a significant amount of nanorods at 70 W. The size of GNPs decreases with increasing acoustic power with a narrower size distribution. Sonochemiluminescence images help in the understanding of the effect of HIFU in controlling the size and shapes of GNPs. The number of radicals that form and the mechanical forces that are generated control the shape and size of the GNPs. UV/Vis spectra and TEM images are used to propose a possible mechanism for the observed effects. The results presented demonstrate, for the first time, that the HIFU system can be used to synthesise size- and shape-controlled metal nanoparticles.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  4. Syafiuddin A, Salmiati S, Jonbi J, Fulazzaky MA
    J Environ Manage, 2018 Jul 15;218:59-70.
    PMID: 29665487 DOI: 10.1016/j.jenvman.2018.03.066
    It is the first time to do investigation the reliability and validity of thirty kinetic and isotherm models for describing the behaviors of adsorption of silver nanoparticles (AgNPs) onto different adsorbents. The purpose of this study is therefore to assess the most reliable models for the adsorption of AgNPs onto feasibility of an adsorbent. The fifteen kinetic models and fifteen isotherm models were used to test secondary data of AgNPs adsorption collected from the various data sources. The rankings of arithmetic mean were estimated based on the six statistical analysis methods of using a dedicated software of the MATLAB Optimization Toolbox with a least square curve fitting function. The use of fractal-like mixed 1, 2-order model for describing the adsorption kinetics and that of Fritz-Schlunder and Baudu models for describing the adsorption isotherms can be recommended as the most reliable models for AgNPs adsorption onto the natural and synthetic adsorbent materials. The application of thirty models have been identified for the adsorption of AgNPs to clarify the usefulness of both groups of the kinetic and isotherm equations in the rank order of the levels of accuracy, and this significantly contributes to understandability and usability of the proper models and makes to knowledge beyond the existing literatures.
    Matched MeSH terms: Metal Nanoparticles*
  5. Jafarzadeh S, Jafari SM
    Crit Rev Food Sci Nutr, 2021;61(16):2640-2658.
    PMID: 32631073 DOI: 10.1080/10408398.2020.1783200
    New food packaging materials provide an attractive option for the advancement of nanomaterials. The poor thermal, mechanical, chemical, and physical properties of biopolymers and their inherent permeability to gases and vapor have increased this interest. Polymeric materials (matrix) in modern technologies require a filler, which can react/interact with the available matrix to provide a new formulation with improved packaging properties including oxygen permeability, moisture permeability, crystalline structure, barrier properties, morphology, thermal stability, optical properties, anti-microbial characteristics, and mechanical properties. The performance of nanocomposite films and packaging is dependent on the size of the nanofillers used and the uniformity of the nanoparticles (NPs) distribution and dispersion in the matrix. Advancement in nanocomposite technologies is expected to grow with the advent of sustainable, low price, environmentally friendly materials with an enhanced performance. The current review addresses advances in the biopolymeric nanocomposites as alternatives to petroleum plastics in the food packaging industry. It also provides a brief description of biopolymer nanocomposite films and gives general information about different metal NPs with an emphasis on their influence on the emerging characteristics of biodegradable films. The results of recent reports provide a better understanding of the influence of metal NPs in food packaging.
    Matched MeSH terms: Metal Nanoparticles*
  6. Sudheer S, Bai RG, Muthoosamy K, Tuvikene R, Gupta VK, Manickam S
    Environ Res, 2022 03;204(Pt A):111963.
    PMID: 34450157 DOI: 10.1016/j.envres.2021.111963
    The demand for the green synthesis of nanoparticles has gained prominence over the conventional chemical and physical syntheses, which often entails toxic chemicals, energy consumption and ultimately lead to negative environmental impact. In the green synthesis approach, naturally available bio-compounds found in plants and fungi can be effective and have been proven to be alternative reducing agents. Fungi or mushrooms are particularly interesting due to their high content of bioactive compounds, which can serve as excellent reducing agents in the synthesis of nanoparticles. Apart from the economic and environmental benefits, such as ease of availability, low synthesis/production cost, safe and no toxicity, the nanoparticles synthesized from this green method have unique physical and chemical properties. Stabilisation of the nanoparticles in an aqueous solution is exceedingly high, even after prolonged storage with unperturbed size uniformity. Biological properties were significantly improved with higher biocompatibility, anti-microbial, anti-oxidant and anti-cancer properties. These remarkable properties allow further exploration in their applications both in the medical and agricultural fields. This review aims to explore the mushroom-mediated biosynthesis of nanomaterials, specifically the mechanism and bio-compounds involved in the synthesis and their interactions for the stabilisation of nanoparticles. Various metal and non-metal nanoparticles have been discussed along with their synthesis techniques and parameters, making them ideal for specific industrial, agricultural, and medical applications. Only recent developments have been explored in this review.
    Matched MeSH terms: Metal Nanoparticles*
  7. Nipa ST, Akter R, Raihan A, Rasul SB, Som U, Ahmed S, et al.
    Environ Sci Pollut Res Int, 2022 Feb;29(8):10871-10893.
    PMID: 34997495 DOI: 10.1007/s11356-021-17933-1
    Tin oxide (SnO2) with versatile properties is of substantial standing for practical application, and improved features of the material are demonstrated in the current issue through the integration of nanotechnology with bio-resources leading to what is termed as biosynthesis of SnO2 nanoparticles (NPs). This review reveals the recent advances in biosynthesis of SnO2 NPs by chemical precipitation method focused on distinct methodologies, characterization, and reaction mechanism along with a photocatalytic application for dye degradation. According to available literature reviews, numerous bio-based precursors selectively extracted from biological substrates have effectively been applied as capping or reducing agents to achieve the metal oxide NPs. The major precursor obtained from the aqueous extract of root barks of Catunaregam spinosa is found to be 7-hydroxy-6-methoxy-2H-chromen-2-one that has been proposed as a model compound for the reduction of metal ions into nanoparticles due to having highly active functional groups, being abundant in plants (67.475 wt%), easy to extract, and eco benign. In addition, the photocatalytic activity of SnO2 NPs for the degradation of organic dyes, pharmaceuticals, and agricultural contaminants has been discussed in the context of a promising bio-reduction mechanism of the synthesis. The final properties are supposed to depend exclusively upon a number of factors, e.g., particle size (
    Matched MeSH terms: Metal Nanoparticles*
  8. Morsin M, Nafisah S, Sanudin R, Razali NL, Mahmud F, Soon CF
    PLoS One, 2021;16(11):e0259730.
    PMID: 34748606 DOI: 10.1371/journal.pone.0259730
    An anisotropic structure, gold (Au) nanoplates was synthesized using a two-step wet chemical seed mediated growth method (SMGM) directly on the substrate surface. Prior to the synthesis process, poly-l-lysine (PLL) as a cation polymer was used to enhance the yield of grown Au nanoplates. The electrostatic interaction of positive charged by PLL with negative charges from citrate-capped gold nanoseeds contributes to the yield increment. The percentage of PLL was varied from 0% to 10% to study the morphology of Au nanoplates in term of shape, size and surface density. 5% PLL with single layer treatment produce a variety of plate shapes such as hexagonal, flat rod and triangular obtained over the whole substrate surface with the estimated maximum yield up to ca. 48%. The high yield of Au nanoplates exhibit dual plasmonic peaks response that are associated with transverse and longitudinal localized surface plasmon resonance (TSPR and LSPR). Then, the PLL treatment process was repeated twice resulting the increment of Au nanoplates products to ca. 60%. The thin film Au nanoplates was further used as sensing materials in plasmonic sensor for detection of boric acid. The anisotropic Au nanoplates have four sensing parameters being monitored when the medium changes, which are peak position (wavelength shift), intensity of TSPR and LSPR, and the changes on sensing responses. The sensor responses are based on the interaction of light with dielectric properties from surrounding medium. The resonance effect produces by a collection of electron vibration on the Au nanoparticles surface after hit by light are captured as the responses. As a conclusion, it was found that the PLL treatment is capable to promote high yield of Au nanoplates. Moreover, the high yield of the Au nanoplates is an indication as excellent candidate for sensing material in plasmonic sensor.
    Matched MeSH terms: Metal Nanoparticles
  9. Zamiri R, Zakaria A, Ahangar HA, Sadrolhosseini AR, Mahdi MA
    Int J Mol Sci, 2010;11(11):4764-70.
    PMID: 21151470 DOI: 10.3390/ijms11114764
    In this study we used a laser ablation technique for preparation of silver nanoparticles. The fabrication process was carried out by ablation of a silver plate immersed in palm oil. A pulsed Nd:YAG laser at a wavelength of 1064 nm was used for ablation of the plate at different times. The palm coconut oil allowed formation of nanoparticles with very small and uniform particle size, which are dispersed very homogeneously within the solution. The obtained particle sizes for 15 and 30 minute ablation times were 2.5 and 2 nm, respectively. Stability study shows that all of the samples remained stable for a reasonable period of time.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  10. Pudza MY, Abidin ZZ, Abdul-Rashid S, Yasin FM, Noor ASM, Abdullah J
    Environ Sci Pollut Res Int, 2020 Apr;27(12):13315-13324.
    PMID: 32020456 DOI: 10.1007/s11356-020-07695-7
    The need for the sensing of environmental pollutants cannot be overemphasized in the twenty-first century. Herein, a sensor has been developed for the sensitive and selective detection of copper (Cu2+), lead (Pb2+) and cadmium (Cd2+) as major heavy metals polluting water environment. A screen-printed carbon electrode (SPCE) modified by fluorescent carbon dots (CDs) and gold nanoparticles (AuNPs) was successfully fabricated for sensing Cu2+, Pb2+ and Cd2+. Differential pulse voltammetry (DPV) and cyclic voltammetry (CV) were deployed for the analysis of ternary analytes. CV was set at a potential range of - 0.8 to + 0.2 V at a scan rate of 100 mV/s, and DPV at a potential range of - 0.8 to + 0.1 V, scan rate of 50 mV/s, pulse rate of 0.2 V and pulse width of 50 ms. DPV technique was applied through the modified electrode for sensitive and selective determination of Cu2+, Pb2+ and Cd2+ at a concentration range of 0.01 to 0.27 ppm for Cu2+, Pb2+ and Cd2+. Tolerance for the highest possible concentration of foreign substances such as Mg2+, K+, Na+, NO3-, and SO42- was observed with a relative error less than ± 3%. The sensitivity of the modified electrode was at 0.17, 0.42 and 0.18 ppm for Cd2+, Pb2+ and Cu2+, respectively, while the limits of detection (LOD) achieved for cadmium, lead and copper were 0.0028, 0.0042 and 0.014 ppm, respectively. The quality of the modified electrode for sensing Cu2+, Pb2+ and Cd2+ at trace levels is in accordance with the World Health Organization (WHO) and Environmental Protection Agency (EPA) water regulation standard. The modified SPCE provides a cost-effective, dependable and stable means of detecting heavy metal ions (Cu2+, Pb2+ and Cd2+) in an aqueous solution. Graphical abstract .
    Matched MeSH terms: Metal Nanoparticles*
  11. Sharma C, Ansari S, Ansari MS, Satsangee SP, Srivastava MM
    Mater Sci Eng C Mater Biol Appl, 2020 Nov;116:111153.
    PMID: 32806256 DOI: 10.1016/j.msec.2020.111153
    In present work, we demonstrate a single step environmentally benign approach to synthesize Au/Ag bimetallic nanoparticles (BMNPs) using aqueous extract of Clove buds for the first time. Clove bud's (CB) extract has proficiency to act as a reducing and stabilizing agent for the formation of Au/Ag BMNPs. In presence of extract, AuIII and AgI are reduced competitively within same solution and produce Au/Ag alloy NPs. The kinetics besides the formation of NPs was studied using UV-visible spectroscopy and efficiency of the extract was monitored by varying contact time, temperature, pH and extract concentration. The electron microscopic studies revealed the presence of NPs with peculiar morphology at alkaline pH. Further, the existence of Au and Ag atoms was investigated using energy dispersive X-ray (EDX), X-ray diffraction (XRD) and cyclic voltammetry (CV) techniques. Fourier transform infrared spectroscopy (FTIR) showed that Eugenol in the extract is mainly responsible for the production of NPs which are also surrounded by various phytochemicals. Zeta potential of all the NPs is found to be negative which prevents their agglomeration due to inter-repulsion and the biosynthesized Au/Ag BMNPs revealed greater catalytic efficiency for the degradation of methyl orange (MO), methylene blue (MB) and reduction of p-nitrophenol (p-NP). Significant enhancement induced by BMNPs compared to individual monometallic nanoparticles (MMNPs) was assigned to the synergistic effect of MMNPs and coating of phytochemicals present in the CB extract.
    Matched MeSH terms: Metal Nanoparticles*
  12. Jamila N, Khan N, Hwang IM, Saba M, Khan F, Amin F, et al.
    Int J Biol Macromol, 2020 Mar 15;147:853-866.
    PMID: 31739066 DOI: 10.1016/j.ijbiomac.2019.09.245
    Gums; composed of polysaccharides, carbohydrates, proteins, and minerals, are high molecular weight hydrophilic compounds with several biological applications. This study describes the nutritional and toxic elements content, chemical composition, synthesis of silver nanoparticles (G-AgNPs), and pharmacological and catalytic properties of Prunus armeniaca (apricot), Prunus domestica (plums), Prunus persica (peaches), Acacia modesta (phulai), Acacia arabica (kikar), and Salmalia malabarica (silk cotton tree) gums. The elemental contents were analyzed by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and ICP-mass spectrometry (ICP-MS). NMR spectroscopy was used for the identification of class of compounds in the mixture, their functional groups were determined through FTIR techniques, and plasmon resonance and size of G-AgNPs through UV-Vis spectroscopic technique and transmission electron microscopy (TEM). From the results, nutritional elements were present at appreciable concentrations, whereas toxic elements showed content below the maximum permissible ranges. Using the elemental data, linear discriminant and principal component analyses classified the gums to 99.9% variability index. Furthermore, G-AgNPs exhibited significant antioxidant, antibacterial, and redox catalytic potential. Hence, the subject G-AgNPs could have promising nutritional, therapeutic and environmental remediation applications.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  13. Tan Sian Hui Abdullah HS, Aqlili Riana Mohd Asseri SN, Khursyiah Wan Mohamad WN, Kan SY, Azmi AA, Yong Julius FS, et al.
    Environ Pollut, 2021 Feb 15;271:116295.
    PMID: 33383429 DOI: 10.1016/j.envpol.2020.116295
    This manuscript describes the reuse of biowaste for the biosynthesis of silver nanoparticles (AgNPs) and their applications. In particular, we hypothesized that the phytochemicals in the onion peels could act as reductant for silver nanoparticles syntheses. AgNO3 solution (1 mmol) was added dropwise to an aqueous solution of onion peel extract in 3:7 ratio. The reaction mixture was subjected to heating at 90 °C for about 30 min. During the synthesis of the AgNPs, the change of the colour of solution was observed. The AgNPs solution was centrifuged to obtain the two layers, which consists of clear solution and solid layers at 12000 rpm for 30 min. The precipitate was filtered and was re-dispersed in deionised water (25 mL). The solution was centrifuged again to obtain the purified AgNPs. Subsequently, this solution was freeze dried for 48 h to afford the powdered AgNPs. In this work, the structure of the AgNPs were synthesized in spherical shape, with an average size of 12.5 nm observed in the Transmission electron microscopy (TEM) analysis. For catalytic application, the synthesized AgNPs could be applied as green catalyst to promote Knoevenagel and Hantzsch reactions. In most cases, the desired products were obtained in satisfactory yields. In addition, the AgNPs were found to be recyclable for the subsequent reactions. After five successive runs, the average isolated yields for both transformations were recorded to be 91% (Knoevenagel condensation) and 94% (Hantzsch reaction), which indicated that the existing AgNPs could apply as green catalyst in the field of organic synthesis. Furthermore, the AgNPs also showed satisfactory result in antioxidant activity. The current results indicate that the AgNPs can act as alternative antioxidant agent and green catalyst in mediating organic transformations.
    Matched MeSH terms: Metal Nanoparticles*
  14. Ibrahim N, Jamaluddin ND, Tan LL, Mohd Yusof NY
    Sensors (Basel), 2021 Jul 28;21(15).
    PMID: 34372350 DOI: 10.3390/s21155114
    The emergence of highly pathogenic and deadly human coronaviruses, namely SARS-CoV and MERS-CoV within the past two decades and currently SARS-CoV-2, have resulted in millions of human death across the world. In addition, other human viral diseases, such as mosquito borne-viral diseases and blood-borne viruses, also contribute to a higher risk of death in severe cases. To date, there is no specific drug or medicine available to cure these human viral diseases. Therefore, the early and rapid detection without compromising the test accuracy is required in order to provide a suitable treatment for the containment of the diseases. Recently, nanomaterials-based biosensors have attracted enormous interest due to their biological activities and unique sensing properties, which enable the detection of analytes such as nucleic acid (DNA or RNA), aptamers, and proteins in clinical samples. In addition, the advances of nanotechnologies also enable the development of miniaturized detection systems for point-of-care (POC) biosensors, which could be a new strategy for detecting human viral diseases. The detection of virus-specific genes by using single-stranded DNA (ssDNA) probes has become a particular interest due to their higher sensitivity and specificity compared to immunological methods based on antibody or antigen for early diagnosis of viral infection. Hence, this review has been developed to provide an overview of the current development of nanoparticles-based biosensors that target pathogenic RNA viruses, toward a robust and effective detection strategy of the existing or newly emerging human viral diseases such as SARS-CoV-2. This review emphasizes the nanoparticles-based biosensors developed using noble metals such as gold (Au) and silver (Ag) by virtue of their powerful characteristics as a signal amplifier or enhancer in the detection of nucleic acid. In addition, this review provides a broad knowledge with respect to several analytical methods involved in the development of nanoparticles-based biosensors for the detection of viral nucleic acid using both optical and electrochemical techniques.
    Matched MeSH terms: Metal Nanoparticles*
  15. Khavarian M, Chai SP, Mohamed AR
    J Nanosci Nanotechnol, 2013 Jul;13(7):4825-37.
    PMID: 23901504
    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  16. Zahmatkesh S, Rezakhani Y, Chofreh AG, Karimian M, Wang C, Ghodrati I, et al.
    Chemosphere, 2023 Jan;310:136837.
    PMID: 36252897 DOI: 10.1016/j.chemosphere.2022.136837
    The COVID-19 outbreak led to the discovery of SARS-CoV-2 in sewage; thus, wastewater treatment plants (WWTPs) could have the virus in their effluent. However, whether SARS-CoV-2 is eradicated by sewage treatment is virtually unknown. Specifically, the objectives of this study include (i) determining whether a mixed matrixed membrane (MMM) is able to remove SARS-CoV-2 (polycarbonate (PC)-hydrous manganese oxide (HMO) and PC-silver nanoparticles (Ag-NP)), (ii) comparing filtration performance among different secondary treatment processes, and (iii) evaluating whether artificial neural networks (ANNs) can be employed as performance indicators to reduce SARS-CoV-2 in the treatment of sewage. At Shariati Hospital in Mashhad, Iran, secondary treatment effluent during the outbreak of COVID-19 was collected from a WWTP. There were two PC-Ag-NP and PC-HMO processes at the WWTP targeted. RT-qPCR was employed to detect the presence of SARS-CoV-2 in sewage fractions. For the purposes of determining SARS-CoV-2 prevalence rates in the treated effluent, 10 L of effluent specimens were collected in middle-risk and low-risk treatment MMMs. For PC-HMO, the log reduction value (LRV) for SARS-CoV-2 was 1.3-1 log10 for moderate risk and 0.96-1 log10 for low risk, whereas for PC-Ag-NP, the LRV was 0.99-1.3 log10 for moderate risk and 0.94-0.98 log10 for low risk. MMMs demonstrated the most robust absorption performance during the sampling period, with the least significant LRV recorded in PC-Ag-NP and PC-HMO at 0.94 log10 and 0.96 log10, respectively.
    Matched MeSH terms: Metal Nanoparticles*
  17. Obaid A, Mohd Jamil AK, Saharin SM, Mohamad S
    Chirality, 2021 11;33(11):810-823.
    PMID: 34486177 DOI: 10.1002/chir.23354
    A simple, inexpensive but effective approach for visual chiral recognition of ketoprofen enantiomers was developed using L-cysteine capped silver nanoparticles (L-Cys-AgNPs) as a colorimetric sensor. Upon the addition of R-ketoprofen to L-Cys-AgNPs, rapid aggregation occurred, and the solution changed color from yellow to green. However, the presence of S-ketoprofen did not induce any color change. The results were characterized using UV-Vis, FESEM, FT-IR, SERS, and zeta potential measurements. The chiral assay described in this work is easily distinguished with the naked eyes or using a UV-Vis spectrometer. The sensor revealed a good linear response to ketoprofen enantiomers in the concentration range of 8.33-33.3 μM with a detection limit of 4.52 μM and relative standard deviation of 3.73%. The proposed method was utilized for the determination of ketoprofen racemic mixtures in water samples and commercial tablets. The method excels by its simplicity, low cost, and good availability of materials.
    Matched MeSH terms: Metal Nanoparticles*
  18. Rabbani G, Khan MJ, Ahmad A, Maskat MY, Khan RH
    Colloids Surf B Biointerfaces, 2014 Nov 1;123:96-105.
    PMID: 25260221 DOI: 10.1016/j.colsurfb.2014.08.035
    The primary objective of this study is to explore the interaction of β-galactosidase with copper oxide nanoparticles (CuO NPs). Steady-state absorption, fluorescence and circular dichroism (CD) spectroscopic techniques have been employed to unveil the conformational changes of β-galactosidase induced by the binding of CuO NPs. Temperature dependent fluorescence quenching results indicates a static quenching mechanism in the present case. The binding thermodynamic parameters delineate the predominant role of H-bonding and van der Waals forces between β-galactosidase and CuO NPs binding process. The binding was studied by isothermal titration calorimetry (ITC) and the result revealed that the complexation is enthalpy driven, the ΔH°<0, ΔS°<0 indicates the formation of hydrogen bonds between β-galactosidase and CuO NPs occurs. Disruption of the native conformation of the protein upon binding with CuO NPs is reflected through a reduced functionality (in terms of hydrolase activity) of the protein CuO NPs conjugate system in comparison to the native protein and CuO NPs exhibited a competitive mode of inhibition. This also supports the general belief that H-bond formation occurs with NPs is associated with a lesser extent of modification in the native structure. Morphological features and size distributions were investigated using transmission electron microscopy (TEM) and dynamic light scattering (DLS). Additionally the considerable increase in the Rh following the addition of CuO NPs accounts for the unfolding of β-galactosidase. Chemical and thermal unfolding of β-galactosidase, when carried out in the presence of CuO NPs, also indicated a small perturbation in the protein structure. These alterations in functional activity of nanoparticle bound β-galactosidase which will have important consequences should be taken into consideration while using nanoparticles for diagnostic and therapeutic purposes.
    Matched MeSH terms: Metal Nanoparticles/ultrastructure; Metal Nanoparticles/chemistry*
  19. Zak AK, Razali R, Majid WH, Darroudi M
    Int J Nanomedicine, 2011;6:1399-403.
    PMID: 21796242 DOI: 10.2147/IJN.S19693
    Zinc oxide nanoparticles (ZnO-NPs) were synthesized via a solvothermal method in triethanolamine (TEA) media. TEA was utilized as a polymer agent to terminate the growth of ZnO-NPs. The ZnO-NPs were characterized by a number of techniques, including X-ray diffraction analysis, transition electron microscopy, and field emission electron microscopy. The ZnO-NPs prepared by the solvothermal process at 150°C for 18 hours exhibited a hexagonal (wurtzite) structure, with a crystalline size of 33 ± 2 nm, and particle size of 48 ± 7 nm. The results confirm that TEA is a suitable polymer agent to prepare homogenous ZnO-NPs.
    Matched MeSH terms: Metal Nanoparticles/ultrastructure; Metal Nanoparticles/chemistry*
  20. Zamiri R, Azmi BZ, Sadrolhosseini AR, Ahangar HA, Zaidan AW, Mahdi MA
    Int J Nanomedicine, 2011;6:71-5.
    PMID: 21289983 DOI: 10.2147/IJN.S14005
    Laser ablation of a silver plate immersed in virgin coconut oil was carried out for fabrication of silver nanoparticles. A Nd:YAG laser at wavelengths of 1064 nm was used for ablation of the plate at different times. The virgin coconut oil allowed formation of nanoparticles with well-dispersed, uniform particle diameters that were stable for a reasonable length of time. The particle sizes and volume fraction of nanoparticles inside the solutions obtained at 15, 30, 45 min ablation times were 4.84, 5.18, 6.33 nm and 1.0 × 10(-8), 1.6 × 10(-8), 2.4 × 10(-8), respectively. The presented method for preparation of silver nanoparticles in virgin coconut oil is environmentally friendly and may be considered a green method.
    Matched MeSH terms: Metal Nanoparticles/radiation effects; Metal Nanoparticles/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links