Displaying publications 21 - 29 of 29 in total

Abstract:
Sort:
  1. Adebiyi FA, Siraj SS, Harmin SA, Christianus A
    Fish Physiol Biochem, 2013 Jun;39(3):547-57.
    PMID: 23010937 DOI: 10.1007/s10695-012-9718-x
    Plasma sex steroid hormonal profile and gonad histology were correlated to study the annual reproductive cycle of Hemibagrus nemurus. Hormones were measured by Enzyme Linked Immunosorbent Assay. Gonad tissues were observed by using light microscopy. The highest testosterone (T) value for male was observed in November and that of female was in October. 11-ketotestosterone (11-KT) and 17β-estradiol (E2) levels were highest in June and November, respectively. Hormonal profiles of T, 11-KT and E2 showed several peaks which indicated a non-seasonal pattern. There were significant differences (p 
  2. Palaniyappan S, Sridhar A, Kari ZA, Téllez-Isaías G, Ramasamy T
    Fish Physiol Biochem, 2023 Nov 24.
    PMID: 37996691 DOI: 10.1007/s10695-023-01266-6
    Aquatic bacterial pathogens can cause severe economic loss in aquaculture industry. An opportunistic pathogen, Aeromonas hydrophila is responsible for Motile Aeromonas Septicemia, leading to high mortality rates in fish. The present study was focused on the efficacy of Aloe barbadensis replacing fishmeal diets on hematological, serum biochemical, antioxidant, histopathological parameters, and disease resistance against A. hydrophila infection in Labeo rohita. Isonitrogenous fishmeal replaced diets (FMR) were prepared with varying levels of A. barbadensis at D1 (0%) (control), D2 (25%), D3 (50%), D4 (75%) and D5 (100%) then fed to L. rohita. After 60 days of post-feeding, the experimental fish were challenged with A. hydrophila. Blood and organs were collected and examined at 1- and 15-days post infection (dpi). The results demonstrated that on 1 dpi, white blood cells (WBC), total protein, cholesterol and low-density lipoprotein (LDL) levels were significantly increased in D3 diet fed groups. The D2 and D3 diet fed group showed decreasing trends of serum glutamic pyruvic transaminase (SGPT) and antioxidant enzymes activity on 15 dpi. The histopathological architecture results clearly illustrated that the D3 diet fed group had given a higher protective effect by reducing the pathological changes associated with A. hydrophila infection in liver, intestine and muscle. Higher percentage of survival rate was also observed in D3 diet fed group. Therefore, the present study suggested that the dietary administration of A. barbadensis up to 50% fishmeal replacement (D3 diet) can elicit earlier antioxidant activity, innate immune response and improve survival rate in L. rohita against A. hydrophila infection.
  3. Kari ZA, Téllez-Isaías G, Khoo MI, Wee W, Kabir MA, Cheadoloh R, et al.
    Fish Physiol Biochem, 2024 Feb 20.
    PMID: 38376668 DOI: 10.1007/s10695-024-01319-4
    Aquaculture has intensified tremendously with the increasing demand for protein sources as the global population grows. However, this industry is plagued with major challenges such as poor growth performance, the lack of a proper environment, and immune system impairment, thus creating stress for the aquaculture species and risking disease outbreaks. Currently, prophylactics such as antibiotics, vaccines, prebiotics, probiotics, and phytobiotics are utilized to minimize the negative impacts of high-density farming. One of the promising prophylactic agents incorporated in fish feed is resveratrol, a commercial phytophenol derived via the methanol extraction method. Recent studies have revealed many beneficial effects of resveratrol in aquatic animals. Therefore, this review discusses and summarizes the roles of resveratrol in improving growth performance, flesh quality, immune system, antioxidant capacity, disease resistance, stress mitigation, and potential combination with other prophylactic agents for aquatic animals.
  4. Okomoda VT, Isah S, Solomon SG, Ikhwanuddin M
    Fish Physiol Biochem, 2024 Apr;50(2):605-616.
    PMID: 38165562 DOI: 10.1007/s10695-023-01293-3
    This study was designed to evaluate the tolerance of Clarias gariepinus juveniles to a gradual and abrupt increase in salinity over time. To this effect, C. gariepinus juveniles were exposed to three salinity incremental protocols namely 1 g L-1 day-1, 5 g L-1 day-1, and 10 g L-1 day-1. Changes in the hematological parameters and the gill histology of fish were analyzed to determine the impact of osmotic stress on the health status of the fish and its osmoregulatory ability. The result obtained showed that juveniles of C. gariepinus can tolerate salinity stress up to 14 g L-1. At 15 g L-1 and beyond, all samples died regardless of gradual (i.e., 1 g L-1 day-1 administered for 15 days) or abrupt salinity exposure (i.e., 5 g L-1 day-1 administered for three days and 10 g L-1 day-1 administered for two days). Interestingly, more than 90% of the fish survived a direct 10 g L-1 exposure for 24 h without prior acclimation. The hematological parameters accessed in the fish exposed to 10 g L-1 (either gradually or abruptly) showed a significant increase in the white blood cells and a decrease in the red blood cells, packed cell volume, hemoglobin concentration, and all derived blood parameters. The results of the serum biochemistry show a lower total protein and albumin in the salinity-treated fish compared to the control group. However, the serum glucose and the plasma electrolytes (i.e., K+, Na+, and Cl-) were higher in the former group than in the latter. Aside from the stress response expressed in the blood parameters, severe gill degenerations were seen in the histological micrograph obtained for the salinity-treated fish, while the control had a near-normal gill architecture. It was concluded that C. gariepinus could tolerate salinity exposure of 10 g L-1 day-1 (administered gradually or abruptly) and below without killing the fish within 24 h.
  5. Taufek NM, Aspani F, Muin H, Raji AA, Razak SA, Alias Z
    Fish Physiol Biochem, 2016 Aug;42(4):1143-55.
    PMID: 26886132 DOI: 10.1007/s10695-016-0204-8
    This study was conducted to investigate the growth performance, biomarkers of oxidative stress, catalase (CAT), superoxide dismutase (SOD), and glutathione S-transferase (GST) as well as the haematological response of African catfish after being fed with fish feed containing different levels of cricket meal. The juvenile fish were assigned to three different treatments with isonitrogenous (35 %) and isoenergetic (19 kJ g(-1)) diets containing 100 % cricket meal (100 % CM), 75 % cricket meal (75 % CM), and 100 % fishmeal (100 % FM) as control groups for 7 weeks. The results indicated that a diet containing 100 % CM and 75 % CM improved growth performance in terms of body weight gain and specific growth rate, when compared to 100 % FM. The feed conversion ratio (FCR) and protein efficiency ratio (PER) did not differ significantly between all diets, but reduced FCR and increased PER were observed with a higher inclusion of cricket meal. A haematological examination of fish demonstrated no significant difference of red blood cells in all diets and white blood cells showed a significantly higher value in fishmeal-fed fish. On the other hand, haemoglobin and haematocrit significantly increased with increasing amounts of cricket meal in the diet. Antioxidant activity of CAT was higher in the 100 % CM group compared to fish fed other diets, whereas GST and SOD showed increasing trends with a higher incorporation of cricket, although insignificant differences were observed between all diets. These results suggest that cricket meal could be an alternative to fishmeal as a protein source in the African catfish diet.
  6. Othman R, Ron XJ, Yao H, O'Bryant P, Rapp D, Pei JC, et al.
    Fish Physiol Biochem, 2022 Feb;48(1):161-171.
    PMID: 35039993 DOI: 10.1007/s10695-021-01038-0
    A study was conducted to evaluate the gonad differentiation of juvenile yellow perch (YP, Perca flavencens) and determine the latest labile period related to hormone treatment. Juvenile fish were subjected to two dietary concentrations of methyltestosterone (MT; 20 and 50 mg/kg feed) for 60 days in three (3) age groups of 38-, 46-, and 67-days post-hatching (dph), where control group were fed with standard commercial feed. Following a 10-month on-growing period, sex phenotypes were determined by gross and histological gonad morphology. Results showed the juvenile YP responded to the exogenous hormone when it was applied at 38 dph for both 20 and 50 mg/kg feed resulting in 100% males. At 46 dph, only 50 mg/kg feed resulted in 100% males. Both MT-treated at 38 and 46 dph significantly differed (P 
  7. Goh PT, Kuah MK, Chew YS, Teh HY, Shu-Chien AC
    Fish Physiol Biochem, 2020 Aug;46(4):1349-1359.
    PMID: 32239337 DOI: 10.1007/s10695-020-00793-w
    Fish are a major source of beneficial n-3 LC-PUFA in human diet, and there is considerable interest to elucidate the mechanism and regulatory aspects of LC-PUFA biosynthesis in farmed species. Long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis involves the activities of two groups of enzymes, the fatty acyl desaturase (Fads) and elongase of very long-chain fatty acid (Elovl). The promoters of elovl5 elongase, which catalyses the rate-limiting reaction of elongating polyunsaturated fatty acid (PUFA), have been previously described and characterized from several marine and diadromous teleost species. We report here the cloning and characterization of elovl5 promoter from two freshwater fish species, the carnivorous snakehead fish (Channa striata) and zebrafish. Results show the presence of sterol-responsive elements (SRE) in the core regulatory region of both promoters, suggesting the importance of sterol regulatory element-binding protein (Srebp) in the regulation of elovl5 for both species. Mutagenesis luciferase and electrophoretic mobility shift assays further validate the role of SRE for basal transcriptional activation. In addition, several Sp1-binding sites located in close proximity with SRE were present in the snakehead promoter, with one having a potential synergy with SRE in the regulation of elovl5 expression. The core zebrafish elovl5 promoter fragment also directed in vivo expression in the yolk syncytial layer of developing zebrafish embryos.
  8. Suely A, Zabed H, Ahmed AB, Mohamad J, Nasiruddin M, Sahu JN, et al.
    Fish Physiol Biochem, 2016 Apr;42(2):431-44.
    PMID: 26501361 DOI: 10.1007/s10695-015-0149-3
    Increasing demand for eco-friendly botanical piscicides and pesticides as replacements for harmful synthetic chemicals has led to investigation of new sources of plant materials. Stem bark of Terminalia arjuna, which has been used as a popular folk medicine since ancient time, was examined for its piscicidal activity. This study aims to determine toxicity of ethanol extract of T. arjuna bark on fresh water stinging catfish (Heteropneustes fossilis), along with evaluation of changes in hematological parameters of the fishes exposed to a lethal concentration. The percent mortality of fishes varied significantly in response to concentrations of the extract and exposure times (between exposure time F = 36.57, p < 0.001; between concentrations F = 39.93, p < 0.001). The lethal concentrations (LC50) of ethanol extract were found to be 12.7, 8.94, 5.63 and 4.71 mg/l for 24, 48, 72 and 96 h, respectively. During acute toxicity test, blood samples of treatment fishes showed significant decreases in the red blood cells count, hematocrit content, hemoglobin concentration, mean corpuscular hemoglobin concentration and plasma protein level when compared to those of the control group, while there were significant increases in the mean corpuscular volume, mean corpuscular hemoglobin, white blood cells count and plasma glucose concentration. These results suggest that T. arjuna bark extract could be considered as a potent piscicide due to its toxic effect on fish, particularly fish hematology.
  9. Issac PK, Lite C, Guru A, Velayutham M, Kuppusamy G, Saraswathi NT, et al.
    Fish Physiol Biochem, 2021 Apr;47(2):293-311.
    PMID: 33394283 DOI: 10.1007/s10695-020-00912-7
    This study reports the antioxidant property and molecular mechanism of a tryptophan-tagged peptide derived from a teleost fish Channa striatus of serine threonine-protein kinase (STPK). The peptide was tagged with tryptophan to enhance the antioxidant property of STPK and named as IW13. The antioxidant activity of IW13 peptide was investigated using in vitro methods such as DPPH, ABTS, superoxide anion radical scavenging and hydrogen peroxide scavenging assay. Furthermore, to investigate the toxicity and dose response of IW13 peptide on antioxidant defence in vitro, L6 myotubes were induced with generic oxidative stress due to exposure of hydrogen peroxide (H2O2). IW13 peptide exposure was found to be non-cytotoxic to L6 cells in the tested concentration (10, 20, 30, 40 and 50 μM). Also, the pre-treatment of IW13 peptide decreased the lipid peroxidation level and increased glutathione enzyme activity. IW13 peptide treatment upregulated the antioxidant enzyme genes: GPx (glutathione peroxidase), GST (glutathione S transferase) and GCS (glutamine cysteine synthase), in vitro in L6 myotubes and in vivo in zebrafish larvae against the H2O2-induced oxidative stress. The results demonstrated that IW13 renders protection against the H2O2-induced oxidative stress through a cellular antioxidant defence mechanism by upregulating the gene expression, thus enhancing the antioxidant activity in the cellular or organismal level. The findings exhibited that the tryptophan-tagged IW13 peptide from STPK of C. striatus could be a promising candidate for the treatment of oxidative stress-associated diseases.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links