Displaying publications 21 - 31 of 31 in total

Abstract:
Sort:
  1. Alharbi KS, Almalki WH, Makeen HA, Albratty M, Meraya AM, Nagraik R, et al.
    J Food Biochem, 2022 Dec;46(12):e14387.
    PMID: 36121313 DOI: 10.1111/jfbc.14387
    Breast cancer (BC) is one of the most challenging cancers to treat, accounting for many cancer-related deaths. Over some years, chemotherapy, hormone treatment, radiation, and surgeries have been used to treat cancer. Unfortunately, these treatment options are unsuccessful due to crucial adverse reactions and multidrug tolerance/resistance. Although it is clear that substances in the nutraceuticals category have a lot of anti-cancer activity, using a supplementary therapy strategy, in this case, could be very beneficial. Nutraceuticals are therapeutic agents, which are nutrients that have drug-like characteristics and can be used to treat diseases. Plant nutraceuticals categorized into polyphenols, terpenoids, vitamins, alkaloids, and flavonoids are part of health food products, that have great potential for combating BC. Nutraceuticals can reduce BC's severity, limit malignant cell growth, and modify cancer-related mechanisms. Nutraceuticals acting by attenuating Hedgehog, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Notch, and Wnt/β-catenin signaling are the main pathways in controlling the self-renewal of breast cancer stem cells (BCSCs). This article reviews some important nutraceuticals and their modes of action, which can be very powerful versus BC. PRACTICAL APPLICATIONS: Nutraceuticals' importance to the control and diagnosis of breast cancer is undeniable and cannot be overlooked. Natural dietary compounds have a wide range of uses and have been used in traditional medicine. In addition, these natural chemicals can enhance the effectiveness of other traditional medicines. They may also be used as a treatment process independently because of their capacity to affect several cancer pathways. This study highlights a variety of natural chemicals, and their mechanisms of action, routes, synergistic effects, and future potentials are all examined.
  2. Wadhwa R, Paudel KR, Chin LH, Hon CM, Madheswaran T, Gupta G, et al.
    J Food Biochem, 2021 01;45(1):e13572.
    PMID: 33249629 DOI: 10.1111/jfbc.13572
    In this study, we had developed Naringenin-loaded liquid crystalline nanoparticles (LCNs) and investigated the anti-inflammatory and anticancer activities of Naringenin-LCNs against human airway epithelium-derived basal cells (BCi-NS1.1) and human lung epithelial carcinoma (A549) cell lines, respectively. The anti-inflammatory potential of Naringenin-LCNs evaluated by qPCR revealed a decreased expression of IL-6, IL-8, IL-1β, and TNF-α in lipopolysaccharide-induced BCi-NS1.1 cells. The activity of LCNs was comparable to the positive control drug Fluticasone propionate (10 nM). The anticancer activity was studied by evaluating the antiproliferative (MTT and trypan blue assays), antimigratory (scratch wound healing assay, modified Boyden chamber assay, and immunoblot), and anticolony formation activity in A549 cells. Naringenin LCNs showed promising antiproliferative, antimigratory, and anticolony formation activities in A549 cells, in vitro. Therefore, based on our observations and results, we conclude that Naringenin-LCNs may be employed as a potential therapy-based intervention to ameliorate airway inflammation and to inhibit the progression of lung cancer. PRACTICAL APPLICATIONS: Naringenin was encapsulated into liquid crystalline nanoparticles, thus, attributing to their sustained-release nature. In addition, Naringenin-loaded LCNs efficiently reduced the levels of pro-inflammatory markers, namely, IL-1β, IL-6, TNF-α, and IL-8. In addition, the Naringenin-loaded LCNs also possess potent anticancer activity, when tested in the A549 cell line, as revealed by the inhibition of proliferation and migration of cells. They also attenuated colony formation and induced apoptosis in the A549 cells. The findings from our study could form the basis for future research that may be translated into an in vivo model to validate the possible therapeutic alternative for lung cancer using Naringenin-loaded LCNs. In addition, the applications of Naringenin-loaded LCNs as an intervention would be of great interest to biological, formulation and respiratory scientists and clinicians.
  3. Mehta M, Malyla V, Paudel KR, Chellappan DK, Hansbro PM, Oliver BG, et al.
    J Food Biochem, 2021 11;45(11):e13954.
    PMID: 34609010 DOI: 10.1111/jfbc.13954
    Metastasis represents the leading cause of death in lung cancer patients. C-X-C Motif Chemokine Ligand 8 (CXCL-8), Chemokine (C-C motif) ligand 20 (CCL-20) and heme oxygenase -1 (HO-1) play an important role in cancer cell proliferation and migration. Berberine is an isoquinoline alkaloid isolated from several herbs in the Papaveraceae family that exhibits anti-inflammatory, anticancer and antidiabetic properties. Therefore, the aim of present study is to investigate the inhibitory potential of berberine monoolein loaded liquid crystalline nanoparticles (berberine-LCNs) against cancer progression. Berberine-LCNs were prepared by mixing berberine, monoolein and poloxamer 407 (P407) using ultrasonication method. A549 cells were treated with or without 5 µM dose of berberine LCNs for 24 hr and total cellular protein was extracted and further analyzed for the protein expression of CCl-20, CXCL-8 and HO-1 using human oncology array kit. Our results showed that berberine-LCNs significantly reduced the expression of CCl-20, CXCL-8 and HO-1 at dose of 5µM. Collectively, our findings suggest that berberine-LCNs have inhibitory effect on inflammation/oxidative stress related cytokines i.e. CCL20, CXCL-8, and HO-1 which could be a novel therapeutic target for the management of lung cancer. PRACTICAL APPLICATIONS: Berberine is an isoquinoline alkaloid extracted from various plants of Papaveraceae family. CXCL-8, CCL-20 and HO-1 play an important role in cancer progression. Our study showed that Berberine LCNs significantly downregulate the expression of CXCL-8, CCL-20 and HO-1 which suggests that Berberine loaded nanoparticles could be a promising therapeutic alternative for the management of lung cancer.
  4. Paudel KR, Patel V, Vishwas S, Gupta S, Sharma S, Chan Y, et al.
    J Food Biochem, 2022 Dec;46(12):e14445.
    PMID: 36239436 DOI: 10.1111/jfbc.14445
    Nutraceuticals have emerged as potential compounds to attenuate the COVID-19 complications. Precisely, these food additives strengthen the overall COVID treatment and enhance the immunity of a person. Such compounds have been used at a large scale, in almost every household due to their better affordability and easy access. Therefore, current research is focused on developing newer advanced formulations from potential drug candidates including nutraceuticals with desirable properties viz, affordability, ease of availability, ease of administration, stability under room temperature, and potentially longer shelf-lives. As such, various nutraceutical-based products such as compounds could be promising agents for effectively managing COVID-19 symptoms and complications. Most importantly, regular consumption of such nutraceuticals has been shown to boost the immune system and prevent viral infections. Nutraceuticals such as vitamins, amino acids, flavonoids like curcumin, and probiotics have been studied for their role in the prevention of COVID-19 symptoms such as fever, pain, malaise, and dry cough. In this review, we have critically reviewed the potential of various nutraceutical-based therapeutics for the management of COVID-19. We searched the information relevant to our topic from search engines such as PubMed and Scopus using COVID-19, nutraceuticals, probiotics, and vitamins as a keyword. Any scientific literature published in a language other than English was excluded. PRACTICAL APPLICATIONS: Nutraceuticals possess both nutritional values and medicinal properties. They can aid in the prevention and treatment of diseases, as well as promote physical health and the immune system, normalizing body functions, and improving longevity. Recently, nutraceuticals such as probiotics, vitamins, polyunsaturated fatty acids, trace minerals, and medicinal plants have attracted considerable attention and are widely regarded as potential alternatives to current therapeutic options for the effective management of various diseases, including COVID-19.
  5. Agyei D, Pan S, Acquah C, Bekhit AEA, Danquah MK
    J Food Biochem, 2019 01;43(1):e12482.
    PMID: 31353495 DOI: 10.1111/jfbc.12482
    Peptides with biological properties, that is, bioactive peptides, are a class of biomolecules whose health-promoting properties are increasingly being exploited in food and health products. However, research on targeted techniques for the detection and quantification of these peptides is still in its infancy. Such information is needed in order to enhance the biological and chemometric characterization of peptides and their subsequent application in the functional food and pharmaceutical industries. In this review, the role of classic techniques such as electrophoretic, chromatographic, and peptide mass spectrometry in the structure-informed detection and quantitation of bioactive peptides are discussed. Prospects for the use of aptamers in the characterization of bioactive peptides are also discussed. PRACTICAL APPLICATIONS: Although bioactive peptides have huge potential applications in the functional foods and health area, there are limited techniques in enhancing throughput detection, quantification, and characterization of these peptides. This review discusses state-of-the-art techniques relevant in complementing bioactive detection and profiling irrespective of the small number of amino acid units. Insights into challenges, possible remedies and prevailing areas requiring thorough research in the extant literature for food chemists and biotechnologists are also presented.
  6. Gao X, Xue Z, Ma Q, Guo Q, Xing L, Santhanam RK, et al.
    J Food Biochem, 2020 02;44(2):e13126.
    PMID: 31877235 DOI: 10.1111/jfbc.13126
    Garlic protein (GP) was enzymatically hydrolyzed using pepsin and trypsin followed by the evaluation of antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities of GP and its hydrolysates. The antihypertensive effects of GP and its hydrolysates were determined in vivo. The results showed that GP and its hydrolysates namely GPH-P (pepsin) and GPH-T (trypsin) possessed appreciable antioxidant and ACE inhibitory activities. The ACE inhibitory activity of GP, GPH-T, and GPH-P was in consistent with their antioxidant activities. GP and its hydrolysates offered significant protective effects against H2 O2 -induced oxidative damage (p 
  7. Ong CB, Annuar MSM
    J Food Biochem, 2021 10;45(10):e13924.
    PMID: 34490635 DOI: 10.1111/jfbc.13924
    Multi-walled carbon nanotubes (MWCNT)-tannase composite was investigated as an immobilized biocatalyst on the basis of its facile preparation, low cost, and excellent aqueous dispersibility. Cross-linked tannase enzymes, obtained in the presence of glutaraldehyde, were composited with MWCNT via physical adsorption. Multiple techniques were applied to investigate, and corroborate the successful adsorption of cross-linked tannase onto the MWCNT structure. Green tea infusion extract post-treatment using the composite preparation showed elevated radical scavenging activities relative to the control. Green tea infusion extract exhibited a markedly reduced EC50 value on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals following its treatment with the enzyme composite, which represents 20%-34% enhancement in its free radical scavenging capacity. Stoichiometry and number of reduced DPPH were determined and compared. The antioxidative potential of a widely consumed, health-beneficial green tea is elevated by the treatment with MWCNT-tannase composite. PRACTICAL APPLICATIONS: Cross-linked tannase enzymes were composited with pristine multi-walled carbon nanotubes via simple physical adsorption. The composite presents key advantages such as low specific volume compared to other well-known immobilization media, inert, facile enzyme composition, and ease of recovery for repeated use. The work demonstrated carbon nanotube prosthetic utility in the biotransformation of food-based health commodity sought after for its nutritional benefits. The approach is of both industrial- and agricultural importance, and is a promising and viable strategy to obtain a natural, functional food supplement for the multi-billion dollar well-being and health-related industries.
  8. Mustafa SM, Chua LS, El-Enshasy HA, Abd Majid FA, Hanapi SZ, Abdul Malik R
    J Food Biochem, 2019 04;43(4):e12805.
    PMID: 31353583 DOI: 10.1111/jfbc.12805
    This study was focused on the effects of fermentation temperature and pH on the quality of Punica granatum juice probioticated with Lactobacillus species: Lactobacillus plantarum, Lactobacillus casei, Lactobacillus bulgaricus, and Lactobacillus salivarius. The whole fruit juice of P. granatum which is rich with phytonutrients appeared to be a good probiotic carrier. The probiotication was carried out for 24 hr at 30, 35, and 37°C and pH 2.5, 4.0, and 5.5 under microaerophilic conditions. The results found that P. granatum juice cultivated with L. casei had a better growth profile with a higher biomass density at 37°C around pH 3.5-4.0. Probiotication could maintain the scavenging activity of P. granatum juice cultivated with L. casei. The scavenging activity achieved up to 90% inhibition at the concentration of 5 mg/ml. The whole fruit-squeezed P. granatum juice was suitable for the growth of Lactobacillus species even without supplementation during cultivation. PRACTICAL APPLICATIONS: The findings of this study presented the potential of P. granatum juice (whole fruit) to be used as a good probiotic carrier, particularly for Lactobacillus species without supplementation. High nutritious P. granatum juice catered the need of probiotic bacteria during fermentation. Probiotication could maintain the antioxidant capacity of the juice in term of its radical scavenging activity. The antioxidant capacity was mainly attributed to the metabolites such as phenolic acids (romarinic acid and caftaric acid) and flavonoids (quercetin, quercetin 3-glucoside, rutin and kaempferol rutinoside). With the optimized temperature (37°C) and pH (4.00), probiotic bacteria could growth well up to a cell viability of 2.46 × 1010  cfu/ml. This offers P. granatum to be developed into functional food to cater to the needs of the consumers who are lactose intolerant to dairy products.
  9. Mohamed Yunus SN, Abdul-Hamid NA, Jaafar AH, Lawal U, Abas F
    J Food Biochem, 2021 02;45(2):e13610.
    PMID: 33491203 DOI: 10.1111/jfbc.13610
    Mangifera caesia and Ficus auriculata are neglected fruits found in Malaysia and are locally known as "buah binjai" and "buah ara", respectively. To profile the metabolites for both fruits, we conducted a robust 1 H-nuclear magnetic resonance (NMR)-based metabolomics approach. Principal component analysis (PCA) and partial least square (PLS) analyses were applied to distinguish the metabolites variations of M. caesia and F. auriculata fruits extracted with different ethanol ratios (0, 70, and 100%). In total, 34 metabolites were identified in M. caesia and F. auriculata fruits. The 70% ethanol extracts of both fruits displayed the highest antioxidant and α-glucosidase inhibitory activities, as well as notable with the highest phenolic content, compared with the other samples. The present metabolomics study shows that the polarities of solvent extractions play a crucial role in the assessment and recovery of the metabolites for the high value of natural antioxidants and α-glucosidase inhibitors in M. caesia and F. auriculata fruits. PRACTICAL APPLICATIONS: Antioxidant and antidiabetic agents from fruit sources are increasingly becoming popular due to its potential contributions to human health, by protecting against infections and degenerative diseases. However, some of these fruits were neglected where the scientific data on their potential benefits and biochemical contents are lacking. The information gained from this study provides valuable knowledge on M. caesia and F. auriculata fruits as natural antioxidant and α-glucosidase inhibitors agents that might be beneficial to consumers, further promote the usage of neglected fruits as functional food and natural supplements.
  10. Younas A, Naqvi SA, Khan MR, Shabbir MA, Jatoi MA, Anwar F, et al.
    J Food Biochem, 2020 09;44(9):e13332.
    PMID: 32588917 DOI: 10.1111/jfbc.13332
    Date palm counts among the oldest fruit crops of the world and is mainly cultivated for its highly nutritious fruits consumed as a staple food in many countries, especially in the Gulf region. Dates are enriched with numerous therapeutic bioactives and functional compounds such as phenolics, flavonols, carotenoids, minerals, and vitamins that not only provide an appreciable amount of energy required for the human body but also act as an effective therapeutic agent against several diseases. This review aimed to provide a deep insight into the nutritional as well as phytochemicals profile of date fruit and its seeds in order to explore their biological (anti-cancer, anti-diabetic, cardio-protective, anti-inflammatory properties), functional food, and nutra-pharmaceutical attributes. PRACTICAL APPLICATIONS: This review provides updated information regarding the date fruits and seeds phytochemicals composition together with highlighting dates potential as a natural therapeutic agent against several diseases. The study also urges the importance of consuming dates as a great package to live a healthy life due to the functional food and nutraceutical properties of this valuable fruit. The study also provides information first time as recommending dates to cope with the hidden hunger or micronutrient deficiency faced by the third world inhabitants. Hence, the review may further help the industry and researchers to explore the potential of dates for future medicinal and nutra-pharmaceutical applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links