Displaying publications 21 - 40 of 159 in total

Abstract:
Sort:
  1. Azeez S, Lasekan O, Jinap S, Sulaiman R
    J Food Sci Technol, 2015 Dec;52(12):8050-8.
    PMID: 26604377 DOI: 10.1007/s13197-015-1900-6
    Central composite rotatable design (CCRD) was used to optimize the settings for the roasting conditions of jackfruit (Artocapus hetrophyllus) seed (JFS). The response variables studied were; color attributes L*, a*, and b*, browning intensity, and fracturability. The colors L*, a*, b* and browning intensity were well predicted by a second-order polynomial model. Fracturability was predicted by a first-order polynomial. The determination coefficients for colors L*, a*, b*, browning intensity, and fracturability were 0.81, 0.96, 0.93, 0.92, and 0.74 respectively. The fitted models were checked for adequacy using analysis of variance (ANOVA). The optimum roasting conditions were established at a temperature of 153.36 °C, 34.36 min, and pH of 6.34 with composite desirability value of 0.95. Micro-structural studies of both raw and roasted JFS at different roasting levels (i.e., low, medium, and high) were also investigated using scanning electron microscope (SEM). JFS starch granules fell in the B-type category with semi-oval to bell-shaped granules (5-9 μm in diameter). In addition, Fourier Transform Infrared analysis was carried out on both raw and roasted JFS. The IR spectra was in the 4000-1000 cm(-1) region which is described by five main modes; O-H, C-H, C = O, (C-H) CH3, and C-O.
  2. Azizun NN, Khairul WM, Daud AI, Sarbon NM
    J Food Sci Technol, 2021 Sep;58(9):3338-3345.
    PMID: 34366451 DOI: 10.1007/s13197-020-04893-6
    A bio-nanocomposite film is a polymer blend with nanofiller dispersed in a biopolymer matrix. The aim of this study is to investigate the functional, gas sensing and antimicrobial properties of bio-nanocomposite films incorporated with chicken skin gelatin/ tapioca starch/zinc oxide at different pH levels (pH 4, 6, 7 and 8). Bio-nanocomposite films were prepared using a casting technique followed by the characterization of their functional, gas sensing and antimicrobial properties. Film formulations with pH at different levels showed increased thickness, colour and water vapour permeability (WVP) (p 
  3. Bhat R, Karim AA
    J Food Sci Technol, 2014 Jul;51(7):1326-33.
    PMID: 24966426 DOI: 10.1007/s13197-012-0652-9
    Developing novel fish gelatin films with better mechanical properties than mammalian gelatin is a challenging but promising endeavor. Studies were undertaken to produce fish gelatin films by combining treatments with different sugars (ribose and lactose) followed 'by' 'and' ultraviolet (UV) radiation, as possible cross-linking agents. Increase in tensile strength and percent elongation at break was recorded, which was more significant in films without sugars that were exposed to UV radiation. Films with added ribose showed decreased solubility after UV treatment and exhibited higher swelling percentage than films with added lactose, which readily dissolved in water. FTIR spectra of all the films showed identical patterns, which indicated no major changes to have occurred in the functional groups as a result of interaction between gelatin, sugars and UV irradiation. The results of this study could be explored for commercial use, depending on industrial needs for either production of edible films or for food packaging purposes.
  4. Chan KW, Khong NM, Iqbal S, Ch'ng SE, Younas U, Babji AS
    J Food Sci Technol, 2014 Nov;51(11):3269-76.
    PMID: 26396320 DOI: 10.1007/s13197-012-0818-5
    Cinnamon deodorised aqueous extract (CinDAE) was prepared and evaluated for its total phenolic (315.3 ± 35.4 mg GAE/g) and flavonoid (99.3 ± 9.6 mg RE/g) contents. Stabilizing efficiency of CinDAE, for chicken meatballs, was measured against oxidative deterioration as function of storage time under chilled conditions. For this purpose, oxidative stability [2-thiobarbituric acid reactive substances (TBARS); peroxide value (PV)], colour and sensory acceptability were measured in the control meatballs (C), and those stabilized with 200 ppm of: CinDAE (T1), ascorbic acid (T2), BHA/BHT (50/50; w/w) (T3). In comparison to "C", induction period (IP) and redness (a* value) of the stabilized samples (T1, T2 and T3) were increased, while PV and TBARS were decreased throughout storage (8 ± 1 °C) significantly (p 
  5. Chan ST, Padam BS, Chye FY
    J Food Sci Technol, 2023 Jan;60(1):303-314.
    PMID: 36618056 DOI: 10.1007/s13197-022-05615-w
    The study aimed to determine the antioxidant activities and phenolic compounds of Bambangan (Mangifera pajang), a type of wild fruit belongs to the family of Anacardiaceae during fermentation at room (28 °C) and elevated temperature (35 °C). The antioxidant capacity was estimated based on 2,2-diphenyl-1-picyrlhydrazyl (DPPH) scavenging activity, ferric-ion-reducing power (FRAP), 2,2´-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation assay and oxygen-radical absorbing capacity (ORAC). A reversed phase high performance liquid chromatography (HPLC) was used to identify the phenolic compounds. Samples of bambangan fermented at 35 °C achieved the highest FRAP (141.42 mM Fe(II)/g extract) and ABTS values (5.00 mmol TE/g) within the first six days as compared to the samples fermented at room temperature (28 °C), which required 10 days to achieve the highest FRAP and ABTS values. No significant difference was found (p > 0.05) on the antioxidant activity of the samples that were kept at prolonged fermentation and storage. The total phenolic content (TPC) increased throughout the fermentation with the highest value of 44.69 ± 0.01 mg GAE/g. Gallic acid, chlorogenic acid, vanillin, ρ -coumaric acid and rutin are the major phenolic compounds identified in the fermented product. The results suggested that the antioxidant capacity of bambangan is affected by the fermentation temperature and the fermented product could be a source of antioxidants.
  6. Chew SC, Tan CP, Tan CH, Nyam KL
    J Food Sci Technol, 2020 Jul;57(7):2507-2515.
    PMID: 32549601 DOI: 10.1007/s13197-020-04286-9
    This study aimed to investigate the effect of a coffee beverage matrix on the oil release percentage and bioaccessibility of bioactive compounds from microencapsulated refined kenaf seed oil (MRKSO) using an in vitro gastrointestinal digestion model. Refined kenaf seed oil was spray-dried with gum arabic, β-cyclodextrin, and sodium caseinate. Oil release percentage, total phenolic content, radical scavenging activity of DPPH and ABTS, tocopherol and tocotrienol contents, as well as phytosterol content, were measured in the oil released from digested MRKSO along with the coffee matrix and compared to the digested MRKSO without coffee matrix and undigested MRKSO. Refined kenaf seed oil showed a significantly higher oxidative stability index than crude, degummed, and neutralized oil samples. About 91.2 and 94.7% of the oils were released from the digested MRKSO without and with coffee matrix, respectively. Oil released from the digested MRKSO with coffee matrix showed an increase in the total phenolic content (200.5%), DPPH (172.7%), and ABTS (68.1%) values, tocopherol and tocotrienol contents (24.6%), as well as the phytosterol content (62.0%), compared to oil released from the digested MRKSO without coffee matrix. MRKSO was successfully incorporated in the coffee drink and can use as a partial replacement for coffee creamers or supplementation in coffee drinks.
  7. Chia KS, Jam MNH, Gan Z, Ismail N
    J Food Sci Technol, 2020 Dec;57(12):4533-4540.
    PMID: 33087966 DOI: 10.1007/s13197-020-04492-5
    Exported fresh intact pineapples must fulfill the minimum internal quality requirement of 12 degree brix. Even though near-infrared (NIR) spectroscopic approaches are promising to non-destructively and rapidly assess the internal quality of intact pineapples, these approaches involve expensive and complex NIR spectroscopic instrumentation. Thus, this research evaluates the performance of a proposed pre-dispersive NIR light sensing approach in non-destructively classifying the Brix of pineapples using K-fold cross-validation, holdout validation, and sensitive analysis. First, the proposed pre-dispersive NIR sensing device that consisted of a light sensing element and five NIR light emitting diodes with peak wavelengths of 780, 850, 870, 910, and 940 nm, respectively, was developed. After that, the diffuse reflectance NIR light of intact pineapples was non-destructively acquired using the developed NIR sensing device before their Brix values were conventionally measured using a digital refractometer. Next, an artificial neural network (ANN) was trained and optimized to classify the Brix values of pineapples using the acquired NIR light. The results of the sensitivity analysis showed that either one wavelength that was near to the water absorbance or chlorophyll band was redundant in the classification. The performance of the trained ANN was tested using new pineapples with the optimal classification accuracy of 80.56%. This indicates that the proposed pre-dispersive NIR light sensing approach coupled with the ANN is promising to be an alternative to non-destructively classifying the internal quality of fruits.
  8. Ching CB, Abdullah J, Yusof NA
    J Food Sci Technol, 2022 Mar;59(3):1053-1062.
    PMID: 35153325 DOI: 10.1007/s13197-021-05109-1
    Palm oil is one of the most produced and traded vegetable oils in the world recently. The quality of palm oil is very important to be examined and one of the quality indices is free fatty acid (FFA) content. Thus, in this study, an electrochemical technique for the determination of FFA as alternative to conventional method (titration method) has been explored. The electrochemical method was developed based on electrochemically reduced graphene oxide (rGO) deposited onto screen printed carbon electrode (SPCE) via drop-casting technique. The modified electrode was characterized by physico-chemical and electrochemical methods, respectively. The voltammetric behaviour of 2-methyl-1,4-naphthaquinone (VK3) in the presence of palmitic acid at the modified electrode was investigated in an acetonitrile/water (3:1) mixture containing 2.5 M lithium perchlorate (LiClO4). The electrochemical detection of palmitic acid was based on the voltammetric reduction of VK3 to form corresponding hydroquinone which is proportional to the concentration of palmitic acid. Under optimum condition, the developed method showed a good linear relationship in the concentration ranging from 0.192 mM to 0.833 mM with the detection limit of 0.079 mM. The developed sensor illustrates high sensitivity and rapid detection towards determination of FFA content in palm oil.
  9. Chiu MT, Tham HJ, Lee JS
    J Food Sci Technol, 2017 Sep;54(10):3327-3337.
    PMID: 28974818 DOI: 10.1007/s13197-017-2785-3
    This study was designed to determine the effect of osmotic dehydration (OD) process temperature (35-55 °C), sucrose concentration (40-60% w/w) and immersion time (90-210 min) on the water loss (WL), solid gain (SG), DPPH radical scavenging activity, ferric reducing antioxidant power (FRAP) and sensory quality of the dehydrated Terung Asam slices. Response Surface Methodology with Central Composite Design was applied to investigate the influence of these variables on the aforementioned responses. The increase in the levels of these processing parameters increased the WL and SG. The antioxidant activities also increased with sugar concentration, but reduced with immersion time and temperature elevation. About 36-80% of IC50 and 47-72% of FRAP were depleted after osmotic process. The loss of antioxidants was predominantly due to leaching during osmotic treatment rather than hot air drying. Despite the losses of these compounds, osmotic pretreatment was able to improve the sensory quality of the product. The optimum OD process condition was predicted as process temperature 38.1 °C, sucrose concentration 55.6% and osmotic duration 126.3 min.
  10. Choi WC, Parr T, Lim YS
    J Food Sci Technol, 2019 Jan;56(1):281-289.
    PMID: 30728570 DOI: 10.1007/s13197-018-3488-0
    The global trend in increasing plant-based protein diets due to health and ideological reasons, has created an increased demand for food legumes that exceeds current production. To meet this demand, it is timely to reduce relying solely on soybean, and explore the potential of the underutilised legumes that are cultivated regionally. Underutilised legumes are rich in protein, carbohydrates and other nutrients that are essential for consumer. However, relatively little is known about their anti-nutritional properties and processing methods. Anti-nutritional factors (ANFs) such as enzyme inhibitors are prevalent in legumes and may interfere with digestibility and nutrient absorption. Nevertheless, an optimised food processing method will overcome this challenge and warrant a safe inclusion of legume in plant-based protein diets. Hence current study aimed to optimise the food processing methods (soaking, wet heating, autoclaving and freezing) and evaluate their efficiency in eliminating the enzyme inhibitors [trypsin, chymotrypsin (CIA) and α-amylase (AIA) inhibitors] present in seven underutilised legumes. Current study showed that autoclaving at 121 °C for 15 min reduced the AIA in all underutilised legumes tested. The AIA and CIA of bambara groundnut were successfully inactivated by wet heating at 50 °C for 60 min, and by autoclaving at 121 °C for 15 min. While the CIA of chickpea was successfully inactivated by freezing at - 80 °C for 24 h.
  11. Chong CY, Abu Bakar F, Rahman RA, Bakar J, Zaman MZ
    J Food Sci Technol, 2014 Jun;51(6):1118-25.
    PMID: 24876644 DOI: 10.1007/s13197-012-0621-3
    Biogenic amines formation in Indian mackerel of tropical region was investigated during storage at ambient (25-29 °C) and ice temperature (0 °C) in relation with changes of amino acids content and amines forming bacteria. All amines increased significantly during storage at two temperatures except for spermidine and spermine. Histamine concentration of 363.5 ppm was detected after 16 h stored at ambient temperature. Aerobic plate count of fish stored at ambient temperature reached 6.98 log CFU g(-1) after 16 h, close to the upper limit (7 log CFU g(-1)) suggested by International Commission on the Microbiological Specifications for Foods (ICMSF). However, proper icing procedure retarded the formation of histamine effectively, resulting only 8.31 ppm after 16 days of ice storage. Aerobic plate count of 5.99 and 7.72 log CFU g(-1) were recorded for fish stored in ice after 16 days and ambient temperature after 20 h, respectively. Histamine exhibited high correlation with histidine (r(2) = -0.963, P  0.05). As storage time progressed, the amines forming bacteria grew significantly except for that stored in ice.
  12. Chong WK, Mah SY, Easa AM, Tan TC
    J Food Sci Technol, 2019 Sep;56(9):4371-4379.
    PMID: 31478006 DOI: 10.1007/s13197-019-03905-4
    Time and temperature parameters of superheated steam (SHS) treatment were optimised using response surface methodology (RSM) for specific lipoxygenase (LOX) activity in soya beans and crude protein content in soya milk. The optimal SHS treatment was obtained at 9.3 min and 119 °C. The predicted values of specific LOX activity and crude protein content by RSM were 0.0098 μmol/(min mg protein) and 3.2%, respectively. These values were experimentally verified to be 0.0081 ± 0.0002 μmol/(min mg protein) and 3.0 ± 0.1%, respectively. Sensory evaluation showed that the beany flavour of soya milk produced from SHS treated soya beans was significantly weaker (P 
  13. Chong YK, Nyam KL
    J Food Sci Technol, 2022 Feb;59(2):510-517.
    PMID: 35185172 DOI: 10.1007/s13197-021-05034-3
    Kenaf (Hibiscus cannabinus L.), an annual herbaceous plant in the Malvaceae family, has become a multifunctional crop in Malaysia due to its large number of industrial applications for its fibrous stem. Recently, its kenaf leaves that have high antioxidant properties are getting more attention to be developed into tea. Therefore, this research aims to determine the best brewing time and temperature based on the physical properties, antioxidant activities and sensory of kenaf leaves tea (KLT). The kenaf leaves powder which was infused in hot (80 °C or 100 °C; 5 min or 10 min) or cold water (room temperature; 60 min or 120 min) were analysed. Results demonstrated that the KLT brewed at 80 °C for 10 min and 100 °C for 10 min showed the highest antioxidant activities in most of the antioxidant analysis conducted. Moreover, the colour of cold-brewed KLT was much lighter than the hot-brewed KLT and the cold-brewed KLT (room temperature; 120 min) can likely be a new trend for the consumer since it contained high antioxidising capabilities. However, the pH, greenness, yellowness, sensory results in KLT were not affected significantly by both brewing time and temperature (p > 0.05). The antioxidant test was correlated positively with the phytochemical contents but insignificant relationship with most of the colour parameters. Overall, the optimum temperature and time for brewing KLT was 80 °C at 10 min because it saved energy and extracted the highest amount of antioxidants while retaining similar sensory taste with other brewing conditions.
  14. Chung KH, Othman Z, Lee JS
    J Food Sci Technol, 2015 Oct;52(10):6218-29.
    PMID: 26396368 DOI: 10.1007/s13197-014-1700-4
    Corn starches with different amylose-to-amylopectin ratio (waxy, normal, Hylon V, and Hylon VII) were treated with five doses of gamma irradiation (1, 5, 10, 25, and 50 kGy). The effects of gamma irradiation on the physicochemical properties of starch samples were investigated. Waxy samples showed an increase of amylose-like fractions when irradiated at 10 kGy. The reduction in apparent amylose content increased with amylose content when underwent irradiation at 25 and 50 kGy. Low amylose starches lost their pasting ability when irradiated at 25 and 50 kGy. Results from thermal behavior and pasting profile suggested that low level of cross-linking occurred in Hylon VII samples irradiated at 5 kGy. Severe reduction in pasting properties, gelatinization temperatures and relative crystallinity with increasing irradiation intensity revealed that waxy samples were affected more by gamma irradiation; this also indicated amylopectin was the starch fraction most affected by gamma irradiation. Alteration level was portrayed differently when different kind of physicochemical properties were investigated, in which the pasting properties and crystallinity of starches were more immensely influenced by gamma irradiation while thermal behavior was less affected. Despite the irradiation level, the morphology and crystal pattern of starch granules were found remain unchanged by irradiation.
  15. Djaeni M, Prasetyaningrum A, Sasongko SB, Widayat W, Hii CL
    J Food Sci Technol, 2015 Feb;52(2):1170-5.
    PMID: 25694735 DOI: 10.1007/s13197-013-1081-0
    Drying is a significant step in the production of carrageenan. However, current drying process still deals with too long drying time and carrageenan quality degradation. The foam mat drying is an option to speed up drying process as well as retaining carrageenan quality. In this case, the carrageenan was mixed with egg white (albumin) as foaming agent and methyl cellulose for foam stabilizer. The foam will break the carrageenan gels and creates the porous structure resulting higher surface area for water transfer. This research studied the effect of egg white and methyl cellulose on carrageenan drying at various air temperature, and thickness. As a response, the water content versus time was observed and the drying rate was estimated. Meanwhile, the carrageenan texture was verified by X-RD (X-Ray Diffraction) and TEM (Transmission Electron Microscopy). Results showed that the presence of egg white stablized by methyl cellulose can speed up drying rate as well as retaining the crystalline structure of carrageenan. The higher albumin content, the faster drying rate. However, the addition of albumin and methyl cellulose restricted not more than 30 % in the mixture for keeping carrageenan quality and purity. By adding egg white 20 % and methyl cellulose 10 %, the water diffusion and drying rate can be two fold compared with carrageenan drying without foam. The improvement can be higher at the higher temperature and thinner carrageenan sheets.
  16. Edirisinghe M, Ali A, Maqbool M, Alderson PG
    J Food Sci Technol, 2014 Dec;51(12):4078-83.
    PMID: 25477684 DOI: 10.1007/s13197-012-0907-5
    Anthracnose, a postharvest disease caused by the fungus Colletotrichum capsici is the most devastating disease of bell pepper that causes great economic losses especially in tropical climates. Therefore, the objective of this study was to evaluate the antifungal properties of chitosan (low molecular weight from crab shell, Mw: 50 kDa and 75-85 % deacetylated) against anthracnose by inducing defense-related enzymes. The concentrations of 0, 0.5, 1.0, 1.5 and 2.0 % chitosan were used to control the fungus in vitro and postharvest. There was a reduction in C. capsici mycelial growth and the highest chitosan concentration (2.0 %) reduced the growth by 70 % after 7 days incubation. In germination test, the concentration of 1.5 and 2.0 % chitosan reduced spore germination in C. capsici between 80 % and 84 %, respectively. In postharvest trial the concentration of 1.5 % decreased the anthracnose severity in pepper fruit by approximately 76 % after 28 days of storage (10 ± 1 °C; 80 % RH). For enzymatic activities, the concentration of 1.5 and 2.0 % chitosan increased the polyphenol oxidase (PPO), peroxidase (POD) and total phenolics in inoculated bell pepper during storage. Based on these results, the chitosan presents antifungal properties against C. capsici, as well as potential to induce resistance on bell pepper.
  17. Eh Suk VR, Mohd Latif F, Teo YY, Misran M
    J Food Sci Technol, 2020 Sep;57(9):3259-3266.
    PMID: 32728274 DOI: 10.1007/s13197-020-04357-x
    Lipid nanocarrier displays the advantages over conventional drug carriers as they are formulated with biodegradable and non-irritant lipids. However, the main drawbacks are the agglomeration of lipid particles, instability over storage, low drug loading, and the burst release of active ingredients. In this study, we investigated the effects of various polysorbate nonionic surfactants namely Tween 20, 40, 60, or 80 on the nanostructured lipid carrier (NLC). NLC incorporated with polysorbate nonionic surfactant was prepared by using high-pressure homogenization technique. The average size was reduced to 139.9 ± 15.8 nm in the presence of Tween 80 and remained stable in nano-size even incubated for 28 days. Encapsulation of l-ascorbic acid or Gold Tri.E 30 showed a high encapsulation efficiency of more than 75%, where the highest was Gold Tri.E in the presence of Tween 60 at 99.7%. In vitro release study showed that the release of both l-ascorbic acid and Gold Tri.E was significantly reduced in NLC with Tween as compared to bare active ingredients and NLC without Tween. In conclusion, the incorporation of Tween successfully produced a lipid nanocarrier that has the potential to be developed as a carrier of various active ingredients such as nutrients, extracts, and drugs.
  18. Fadel A, Plunkett A, Ashworth J, Mahmoud AM, Ranneh Y, El Mohtadi M, et al.
    J Food Sci Technol, 2018 Mar;55(3):1201-1206.
    PMID: 29487463 DOI: 10.1007/s13197-017-3010-0
    Arabinoxylans (AXs) are major dietary fibre in cereals. Recently, AXs have attracted a great deal of attention because of their biological activities. These activities have been suggested to be related to the content of low molecular weight (Mw) AXs, in particular those with Mw below 32 kDa. Rice bran is a rich source of AXs. However, water extraction of AXs is difficult and often gives low yield. Extrusion processing has been used to increase the solubility of cereal dietary fibre. The aim of this research was to study the effect of extrusion screw-speeds (80 and 160) rpm on the extraction yield and Mw of water extractable AXs from rice bran. It was found that the extraction of AXs increased significantly with an increase in screw speed and was accompanied by a significant decrease in the Mw of AXs from extruded rice bran. The percentage of very low molecular weight AXs (0.79-1.58 kDa) significantly increased with increasing screw speed.
  19. Fan H, Dumont MJ, Simpson BK
    J Food Sci Technol, 2017 Nov;54(12):4000-4008.
    PMID: 29085142 DOI: 10.1007/s13197-017-2864-5
    Gelatin from salmon (Salmo salar) skin with high molecular weight protein chains (α-chains) was extracted using trypsin-aided process. Response surface methodology was used to optimise the extraction parameters. Yield, hydroxyproline content and protein electrophoretic profile via sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of gelatin were used as responses in the optimization study. The optimum conditions were determined as: trypsin concentration at 1.49 U/g; extraction temperature at 45 °C; and extraction time at 6 h 16 min. This response surface optimized model was significant and produced an experimental value (202.04 ± 8.64%) in good agreement with the predicted value (204.19%). Twofold higher yields of gelatin with high molecular weight protein chains were achieved in the optimized process with trypsin treatment when compared to the process without trypsin.
  20. Fareed F, Saeed F, Afzaal M, Imran A, Ahmad A, Mahmood K, et al.
    J Food Sci Technol, 2022 Dec;59(12):4812-4821.
    PMID: 36276519 DOI: 10.1007/s13197-022-05567-1
    In the current study, the probiotic (Lactobacillus acidophilus) was encapsulated using Gum Arabic and polyvinyl alcohol blended nanofibers by electrospinning. Obtained nanofibers were characterized in terms of particle size, diameter, mechanical strength, and encapsulation efficiency. The molecular and internal structure characterization was carried out using Fourier transform infrared spectroscopy and X-ray diffraction respectively. Thermo Gravimetric (TGA) analysis was conducted to determine the thermal features of PVA/GA/probiotics nanofibers. Free and encapsulated probiotics were also subjected to in vitro assay under different detrimental conditions. Images obtained using SEM indicated that probiotics were successfully encapsulated in blends by a nano-spider. FTIR and XRD spectra showed bonding interactions between the wall and core materials. In-vitro assay indicated that probiotics with encapsulated showed significantly (P 
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links