Displaying publications 21 - 40 of 159 in total

Abstract:
Sort:
  1. Noorlaila A, Hasanah HN, Yusoff A, Sarijo SH, Asmeda R
    J Food Sci Technol, 2017 Oct;54(11):3532-3542.
    PMID: 29051648 DOI: 10.1007/s13197-017-2810-6
    The effects of xanthan gum (XG) and hydroxypropyl methylcellulose (HPMC) in sponge cakes were studied. Hydrocolloids enhanced the thickening effect in batter that affected the textural attributes of sponge cakes. During storage, the structural changes in XG-cake resulted in higher hardness compared to HPMC-cake. Similar to XG, HPMC also contributed moistness to cake. The moisture loss of cake containing XG was slower than HPMC-cake. FTIR study showed absorption of OH at region of 3600-2900 cm-1 that explained the strong interaction of water in cake containing XG compared to other cake formulations.
  2. Fareed F, Saeed F, Afzaal M, Imran A, Ahmad A, Mahmood K, et al.
    J Food Sci Technol, 2022 Dec;59(12):4812-4821.
    PMID: 36276519 DOI: 10.1007/s13197-022-05567-1
    In the current study, the probiotic (Lactobacillus acidophilus) was encapsulated using Gum Arabic and polyvinyl alcohol blended nanofibers by electrospinning. Obtained nanofibers were characterized in terms of particle size, diameter, mechanical strength, and encapsulation efficiency. The molecular and internal structure characterization was carried out using Fourier transform infrared spectroscopy and X-ray diffraction respectively. Thermo Gravimetric (TGA) analysis was conducted to determine the thermal features of PVA/GA/probiotics nanofibers. Free and encapsulated probiotics were also subjected to in vitro assay under different detrimental conditions. Images obtained using SEM indicated that probiotics were successfully encapsulated in blends by a nano-spider. FTIR and XRD spectra showed bonding interactions between the wall and core materials. In-vitro assay indicated that probiotics with encapsulated showed significantly (P 
  3. Amirdivani S, Baba AS
    J Food Sci Technol, 2015 Jul;52(7):4652-60.
    PMID: 26139940 DOI: 10.1007/s13197-014-1670-6
    The purpose of this study was to evaluate fermentation of milk in the presence of green tea (Camellia sinensis) with respect to changes in antioxidant activity, phenolic compounds and the growth of lactic acid bacteria. Pasteurized full fat cow's milk and starter culture were incubated at 41 °C in the presence of two different types of green tea extracts. The yogurts formed were refrigerated (4 °C) for further analysis. The total phenolic content was highest (p 
  4. See SF, Ghassem M, Mamot S, Babji AS
    J Food Sci Technol, 2015 Feb;52(2):753-62.
    PMID: 25694683 DOI: 10.1007/s13197-013-1043-6
    Pretreatments with different types of alkali and acid were compared to determine their effects on gelatin extraction from African catfish (Clarias gariepinus) skin. The study was divided into three parts. In the first part, the skins were only treated with alkaline (Ca(OH)2 or NaOH) solution or pretreated with acetic acid solution. For second part, combination of alkali and acid pretreatment was carried out. For the third part, the skins were first treated with NaOH solution, followed by the treatment with acetic acid, citric acid or sulfuric acid solution. Functional properties including the yield of protein recovery, gel strength, viscosity, pH and viscoelastic properties were determined on gelatins obtained with different pretreatment conditions. Pretreatment with alkali removed noncollagenous proteins effectively, whilst acid pretreatment induced some loss of collagenous proteins. Combination of alkali and acid pretreatment not only removed the noncollagenous proteins and caused a significant amount of swelling, but also provided the proper pH condition for extraction, during which some cross-linkages could be further destroyed but with less breakage of intramolecular peptide chains. Pretreatment of catfish skins with 0.2 N NaOH followed by 0.05 M acetic acid improved yield of protein recovery, gel strength, viscosity, melting temperature and gelling temperature of gelatin extract.
  5. Ghassem M, Fern SS, Said M, Ali ZM, Ibrahim S, Babji AS
    J Food Sci Technol, 2014 Mar;51(3):467-75.
    PMID: 24587521 DOI: 10.1007/s13197-011-0526-6
    This study was conducted to evaluate the kinetic characteristics of proteolytic activity of proteases on Channa striatus protein fractions. Degree of hydrolysis (DH), amino acid composition and kinetic parameters of sarcoplasmic and myofibrillar proteins were investigated when incubated with proteinase K and thermolysin, separately. After 30 min incubation with proteases, a decrease in DH of sarcoplasmic protein was observed whereas, hydrolysis of myofibrillar protein with proteases took 2 h with an increase in DH. The major amino acids were glutamic acid (16.6%) in thermolysin- myofibrillar hydrolysate followed by aspartic acid (11.1%) in sarcoplasmic protein fraction with no enzyme treatment and lysine (10%) in thermolysin-myofibrillar hydrolysate. The apparent Michaelis constant of proteinase K was lower than thermolysin for both sarcoplasmic and myofibrillar proteins. However, rate of turnover and enzyme efficiency suggested that sarcoplasmic and myofibrillar proteins are suitable substrates for proteinase K and thermolysin hydrolytic reaction, respectively.
  6. Chan KW, Khong NM, Iqbal S, Ch'ng SE, Younas U, Babji AS
    J Food Sci Technol, 2014 Nov;51(11):3269-76.
    PMID: 26396320 DOI: 10.1007/s13197-012-0818-5
    Cinnamon deodorised aqueous extract (CinDAE) was prepared and evaluated for its total phenolic (315.3 ± 35.4 mg GAE/g) and flavonoid (99.3 ± 9.6 mg RE/g) contents. Stabilizing efficiency of CinDAE, for chicken meatballs, was measured against oxidative deterioration as function of storage time under chilled conditions. For this purpose, oxidative stability [2-thiobarbituric acid reactive substances (TBARS); peroxide value (PV)], colour and sensory acceptability were measured in the control meatballs (C), and those stabilized with 200 ppm of: CinDAE (T1), ascorbic acid (T2), BHA/BHT (50/50; w/w) (T3). In comparison to "C", induction period (IP) and redness (a* value) of the stabilized samples (T1, T2 and T3) were increased, while PV and TBARS were decreased throughout storage (8 ± 1 °C) significantly (p 
  7. Mahmoodani F, Ardekani VS, See SF, Yusop SM, Babji AS
    J Food Sci Technol, 2014 Nov;51(11):3104-13.
    PMID: 26396302 DOI: 10.1007/s13197-012-0816-7
    In the present study, to establish the optimum gelatin extraction conditions from pangasius catfish (Pangasius sutchi) bone, Response Surface Methodology (RSM) with a 4-factor, 5-level Central Composite Design (CCD) was conducted. The model equation was proposed with regard to the effects of HCl concentration (%, X1), treatment time (h, X2), extraction temperature (°C, X3) and extraction time (h, X4) as independent variables on the hydroxyproline recovery (%, Y) as dependent variable. X 1 = 2.74 %, X 2 = 21.15 h, X 3 = 74.73 °C and X 4 = 5.26 h were found to be the optimum conditions to obtain the highest hydroxyproline recovery (68.75 %). The properties of optimized catfish bone gelatin were characterized by amino acid analysis, SDS-PAGE, gel strength, TPA and viscosity in comparison to bovine skin gelatin. The result of SDS-PAGE revealed that pangasius catfish bone gelatin consisted of at least 2 different polypeptides (α1 and α2 chains) and their cross-linked chains. Moreover, the pangasius catfish bone gelatin was found to contain 17.37 (g/100 g) imino acids (proline and hydroxyproline). Pangasius catfish bone gelatin also indicated physical properties comparable with that of bovine and higher than those from cold water fish gelatin. Based on the results of the present study, there is a potential for exploitation of pangasius catfish bone for gelatin production. Furthermore, RSM provided the best method for optimizing the gelatin extraction parameters.
  8. Solati Z, Baharin BS
    J Food Sci Technol, 2015 Jun;52(6):3475-84.
    PMID: 26028729 DOI: 10.1007/s13197-014-1409-4
    Effect of supercritical CO2 extracted Nigella sativa L. seed extract (NE) on frying performance of sunflower oil and refined, bleached and deodorized (RBD) palm olein was investigated at concentrations of 1.2 % and 1.0 % respectively. Two frying systems containing 0 % N. sativa L. extract (Control) and 0.02 % butylated hydroxytoluene (BHT) were used for comparison. Physicochemical properties such as fatty acid composition (FAC), Peroxide Value (PV), Anisidine Value (AV), Totox Value (TV), Total Polar Content (TPC), C18:2/C16:0 ratio and viscosity of frying oils were determined during five consecutive days of frying. Results have shown that N. sativa L. extract was able to improve the oxidative stability of both frying oils during the frying process compared to control. The stabilizing effect of antioxidants were in the order of BHT > NE. RBD palm olein was found to be more stable than sunflower oil based on the ratio of linoleic acid (C18:2) to palmitic acid (C16:0) and fatty acid composition.
  9. Ahmad MN, Hilmi NHN, Normaya E, Yarmo MA, Bulat KHK
    J Food Sci Technol, 2020 Aug;57(8):2852-2862.
    PMID: 32612298 DOI: 10.1007/s13197-020-04317-5
    Abstract: Meat tenderness is the most important criterion in food quality because it strongly influences the consumer's satisfaction. Tenderness generally depends on connective tissue and sarcomere length of muscle. One of the effective methods for meat tenderizing is protease treatment. In this study, Manihot esculenta root was chosen as a protease source due to its skin blistering effect, suggesting the presence of strong proteolytic activity. The extraction of the crude protease was optimized by using response surface methodology (RSM) with four independent variables, which were pH (X1), CaCl2 (X2), Triton X-100 (X3) and 2-mercaptoethanol (X4). Based on the RSM model, all the independent variables were significant and the optimum extraction conditions were pH 9, 3.24 mM CaCl2, 4.12% Triton X-100 and 6.32 mM 2-mercaptoethanol. Tukey's test results showed that the difference between the expected and experimental protease activity value was 0.05%. A reduction of meat firmness was observed when samples treated with enzyme were compared with a control by using a texture analyser. Electrophoretic patterns also showed extensive proteolysis and a reduction of intensity and number of the protein bands in the treated sample. SEM clearly revealed the degradation of muscle fibres and connective tissue of meat treated with crude protease.

    Graphic abstract:

  10. Ling CX, Chang YP
    J Food Sci Technol, 2017 Jun;54(7):2041-2049.
    PMID: 28720961 DOI: 10.1007/s13197-017-2641-5
    Guava seeds are produced as a waste product by the guava processing industry. Their high carbohydrate contents may suit the carbohydrate needs of the feed sector but their high dietary fiber content limits their feed value. The feed values of fruit seeds can be improved through germination, which involves the mobilization of nutrients through seed enzymes and alters the seed carbohydrate composition. The changes of selected carbohydrates in guava (Psidium guajava L.) seeds brought by germination to those in red bean (Vigna angularis) and winter wheat (Triticum aestivum L.) were compared. The contents of soluble carbohydrates, digestible starch, resistant starch and cellulose in the seeds were determined. The radial diffusion method was used to detect carbohydrate-degrading enzymes in the seed extracts. Guava seeds were rich in cellulose (402.2 mg/g), which decreased progressively during germination, probably through the action of cellulase. Winter wheat contained the highest starch content (412.2 mg/g) and also distinct quantities of α-amylase and cellulase. The starch contents of all the seeds decreased, but the soluble carbohydrate contents in red beans and guava seeds increased significantly by the end of germination, suggesting the transient oversupply of reserve metabolites. The content of hydrolyzed polysaccharides increased in the germinated seeds with detectable amounts of cellulose-degrading enzymes present, indicating improved value as feed. Further research is warranted to explore the potential of guava seeds as a source of low-cost animal feed supplements.
  11. Liang JL, Yeow CC, Teo KC, Gnanaraj C, Chang YP
    J Food Sci Technol, 2019 Oct;56(10):4696-4704.
    PMID: 31686701 DOI: 10.1007/s13197-019-03912-5
    The capsicum seed core and cabbage outer leaves are common wastes generated in the vegetable processing industry. We explored the in vitro health-promoting activity of these waste products for valorization. Freeze-dried and pulverized cabbage wastes had a high bile acid binding capacity and the capsicum wastes inhibited glucose dialysis more effectively. Methanolic extracts prepared with conventional solvent extraction and ultrasound-assisted extraction were analyzed to determine their 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity, in vitro α-amylase inhibitory, in vitro lipase inhibitory, and prebiotic activity. Crude extracts of cabbage and capsicum wastes were screened using GC-MS analysis. The cabbage waste extracts showed high antioxidant activities but did not inhibit α-amylase. The capsicum waste extracts inhibited both lipase and α-amylase activities and supported the growth of the probiotic bacterium, Lactobacilli brevis. Volatile compounds of the vegetables consisted mainly of phenols and fatty acid esters. In all assays except the α-amylase inhibition assay, the extracts prepared with ultrasound-assisted solvent extraction showed higher activity than those prepared using the conventional method. The capsicum seed core and cabbage outer leaves are potential sources of phytochemicals and antioxidant fibers. Capsicum waste extract supported probiotic bacterial growth without a lag phase. These waste products may be processed into high-value functional ingredients.
  12. Mior Zakuan Azmi M, Taip FS, Mustapa Kamal SM, Chin NL
    J Food Sci Technol, 2019 Oct;56(10):4616-4624.
    PMID: 31686693 DOI: 10.1007/s13197-019-03926-z
    Baking temperature and time are among the conditions for producing good quality cakes. The aim of this study was to investigate the effects of baking temperature and time on the volume expansion, moisture content, and texture of moist cakes baked in either an air fryer or a convection oven. The cakes were baked under different conditions: (1) baking temperature of 150 °C, 160 °C, and 170 °C for both air fryer and convection oven and (2) baking time of 25, 30, 35 min for air fryer and 35, 40, 45 min for convection oven. Baking temperature and time were found to have a significant (p 
  13. Tan CH, Ariffin AA, Ghazali HM, Tan CP, Kuntom A, Choo AC
    J Food Sci Technol, 2017 Jun;54(7):1757-1764.
    PMID: 28720930 DOI: 10.1007/s13197-017-2569-9
    This article reports on the changes of oxidation indices and minor components of low free fatty acid (FFA) and freshly extracted crude palm oils after storage at ambient (28 ± 1 C) and 60 C for 77 days. The changes in peroxide value (PV), FFA, extinction coefficient at 233 and 269 nm (K233 and K269), bleachability index (DOBI), carotene and vitamin E contents were monitored. PV, FFA, K233 and K269 of both oil samples increased as storage progressed while the values of carotene and vitamin E contents decreased. At the end of storage period at 60 °C, the carotene content of low FFA crude palm oil was 4.24 ppm. The storage conditions used led to the loss of entire vitamin E fractions of both oil samples as well as a reduction in DOBI values except for freshly extracted crude palm oil stored at ambient temperature.
  14. Lee PE, Choo WS
    J Food Sci Technol, 2015 Jul;52(7):4378-86.
    PMID: 26139903 DOI: 10.1007/s13197-014-1495-3
    The emulsifying capacity of surfactants (polysorbate 20, polysorbate 80 and soy lecithin) and proteins (soy protein isolate and whey protein isolate) in flaxseed oil was measured based on 1 % (w/w) of emulsifier. Surfactants showed significantly higher emulsifying capacity compared to the proteins (soy protein isolate and whey protein isolate) in flaxseed oil. The emulsion stability of the flaxseed oil emulsions with whey protein isolate (10 % w/w) prepared using a mixer was ranked in the following order: 1,000 rpm (58 min) ≈ 1,000 rpm (29 min) ≈ 2,000 rpm (35 min) >2,000 rpm (17.5 min). The emulsion stability of the flaxseed oil emulsions with whey protein isolate (10 % w/w) prepared using a homogenizer (Ultra Turrax) was independent of the speed and mixing time. The mean particle size of the flaxseed oil emulsions prepared using the two mixing devices ranged from 23.99 ± 1.34 μm to 47.22 ± 1.99 μm where else the particle size distribution and microstructure of the flaxseed oil emulsions demonstrated using microscopic imaging were quite similar. The flaxseed oil emulsions had a similar apparent viscosity and exhibited shear thinning (pseudoplastic) behavior. The flaxseed oil emulsions had L* value above 70 and was in the red-yellow color region (positive a* and b* values).
  15. Gengatharan A, Dykes G, Choo WS
    J Food Sci Technol, 2021 Apr;58(4):1401-1410.
    PMID: 33746268 DOI: 10.1007/s13197-020-04651-8
    The effect of solvent, substrate-to-solvent ratio and concentration of pectinase on the extraction of betacyanins from the pulp of red pitahaya (Hylocereus polyrhizus) was evaluated with respect to yield, betacyanin content (BC) and total sugar content. The application of betacyanins from red pitahaya in ice cream was then evaluated by comparison to a commercial colourant, E-162. Without the use of pectinase, the highest yields (9.11 ± 0.35%) of betacyanins were obtained using 95% ethanol at a substrate-to-solvent ratio of 1:1. With the use of pectinase at a concentration of 1.5%, the highest yield (17.11-17.45%) of betacyanins were obtained using water as a solvent at a substrate-to-solvent ratio of 1:1 and 1:2. Pectinase treatment (1.5-2.5%) using water as a solvent yielded betacyanins with the highest BC (126.47-130.83 g kg-1) and lowest total sugar content (57.85-59.74 g kg-1). The BC and total colour changes were similar in ice cream containing betacyanins from red pitahaya and E-162 throughout the 21-days of frozen storage at -18 °C. Betacyanins from red pitahaya or E-162 enhanced the antioxidant properties of ice cream. The sensory evaluation of ice cream containing betacyanins from red pitahaya showed a better colour acceptability than E-162.
  16. Jeyaraj EJ, Lim YY, Choo WS
    J Food Sci Technol, 2021 Jun;58(6):2054-2067.
    PMID: 33967304 DOI: 10.1007/s13197-020-04745-3
    Clitoria ternatea or commonly known as 'Butterfly pea' has been used traditionally in Ayurvedic medicine in which various parts of the plants are used to treat health issues such as indigestion, constipation, arthritis, skin diseases, liver and intestinal problems. The flowers of C. ternatea are used worldwide as ornamental flowers and traditionally used as a food colorant. This paper reviews the recent advances in the extraction and biological activities of phytochemicals from C. ternatea flowers. The application of maceration or ultrasound assisted extraction greatly increased the yield (16-247% of increase) of phytochemicals from C. ternatea flowers. Various phytochemicals such as kaempferol, quercetin and myricetin glycosides as well as anthocyanins have been isolated from C. ternatea flowers. Clitoria ternatea flower extracts were found to possess antimicrobial, antioxidant, anti-inflammatory, cytotoxic and antidiabetic activities which are beneficial to human health. Clitoria ternatea flower is a promising candidate for functional food applications owing to its wide range of pharmacotherapeutic properties as well as its safety and effectiveness.
  17. Vidana Gamage GC, Lim YY, Choo WS
    J Food Sci Technol, 2022 Mar;59(3):831-845.
    PMID: 35185195 DOI: 10.1007/s13197-021-05054-z
    Anthocyanins are considered as the largest group of water-soluble pigments found in the vacuole of plant cells, displaying range of colors from pink, orange, red, purple and blue. They belong to flavonoids, a polyphenolic subgroup. Application of anthocyanins in food systems as natural food colourants is limited due to the lack of stability under different environmental conditions such as light, pH, heat etc. Anthocyanins esterified with one or more acid groups are referred as acylated anthocyanins. Based on the presence or absence of acyl group, anthocyanins are categorized as acylated and nonacylated anthocyanins. Acylated anthocyanins are further classified as mono, di, tri, tetra acylated anthocyanins according to the number of acyl groups present in the anthocyanin. This review classifies common anthocyanin sources into non-acylated, mono-, di-, tri- and tetra-acylated anthocyanins based on the major anthocyanins present in these sources. The relative stabilities of these anthocyanins with respect to thermal, pH and photo stress in beverage systems are specifically discussed. Common anthocyanin sources such as elderberry, blackberry, and blackcurrant mainly contain nonacylated anthocyanins. Red radish, purple corn, black carrot also mainly contain mono acylated anthocyanins. Red cabbage and purple sweet potato have both mono and diacylated anthocyanins. Poly acylated anthocyanins show relatively higher stability compared with nonacylated and monoacylated anthocyanins. Several techniques such as addition of sweeteners, co-pigmentation and acylation techniques could enhance the stability of nonacylated anthocyanins. Flowers are main sources of polyacylated anthocyanins having higher stability, yet they have not been commercially exploited for their anthocyanins.
  18. Gengatharan A, Dykes GA, Choo WS
    J Food Sci Technol, 2021 Sep;58(9):3611-3621.
    PMID: 34366478 DOI: 10.1007/s13197-021-05116-2
    A study was conducted to concentrate the betacyanin in red pitahaya extracts by removing the coexisting sugars by fermentation. Four lactic acid bacteria (Lactobacillus acidophilus, L. casei, L. rhamnosus and L. plantarum) and a yeast species (Saccharomyces cerevisiae) were screened to determine their efficiency to reduce sugar content in red pitahaya extracts for concentration of their betacyanin content. A reduction of sugar content (19.8-56.4%) and increase in the yield of betacyanins were observed in all extracts as compared to the control, which was not innoculated with any microorganisms after 1 day of fermentation. The lowest total sugar content (26.40 g/L) was observed in extracts fermented by S. cerevisiae. Extracts fermented by S. cerevisiae also showed greater numbers of microbial cells (10.75 log CFU/mL) and a lower pH value (3.54) compared to those (6.89-8.48 log CFU/mL and pH 4.64-5.42) of the Lactobacillus spp. after 1 day of fermentation. An optimization step using response surface methodology (RSM) was then conducted using S. cerevisiae. Temperature, time and agitation speed were found to have a significant effect on the total sugar content and BC of concentrated betacyanins from red pitahaya, while the yield of betacyanins was significantly influenced by temperature and agitation speed.

    SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13197-021-05116-2.

  19. Chan ST, Padam BS, Chye FY
    J Food Sci Technol, 2023 Jan;60(1):303-314.
    PMID: 36618056 DOI: 10.1007/s13197-022-05615-w
    The study aimed to determine the antioxidant activities and phenolic compounds of Bambangan (Mangifera pajang), a type of wild fruit belongs to the family of Anacardiaceae during fermentation at room (28 °C) and elevated temperature (35 °C). The antioxidant capacity was estimated based on 2,2-diphenyl-1-picyrlhydrazyl (DPPH) scavenging activity, ferric-ion-reducing power (FRAP), 2,2´-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation assay and oxygen-radical absorbing capacity (ORAC). A reversed phase high performance liquid chromatography (HPLC) was used to identify the phenolic compounds. Samples of bambangan fermented at 35 °C achieved the highest FRAP (141.42 mM Fe(II)/g extract) and ABTS values (5.00 mmol TE/g) within the first six days as compared to the samples fermented at room temperature (28 °C), which required 10 days to achieve the highest FRAP and ABTS values. No significant difference was found (p > 0.05) on the antioxidant activity of the samples that were kept at prolonged fermentation and storage. The total phenolic content (TPC) increased throughout the fermentation with the highest value of 44.69 ± 0.01 mg GAE/g. Gallic acid, chlorogenic acid, vanillin, ρ -coumaric acid and rutin are the major phenolic compounds identified in the fermented product. The results suggested that the antioxidant capacity of bambangan is affected by the fermentation temperature and the fermented product could be a source of antioxidants.
  20. Nopianti R, Huda N, Ismail N, Ariffin F, Easa AM
    J Food Sci Technol, 2013 Aug;50(4):739-46.
    PMID: 24425976 DOI: 10.1007/s13197-011-0394-0
    Physicochemical properties of threadfin bream surimi with different levels of polydextrose (3%, 6%, 9% and 12%), raw surimi, raw surimi with addition sodium tripolyphosphate and commercial surimi (sucrose) during 6 months of frozen storage were investigated. The analyses included the measurement of Ca(2+)-ATPase, sulfhydryl contents, protein solubility, sodium dodecyl sulfate polyacrylamide gel electrophoresis, differential scanning calorimetry and scanning electron microscopy. The Ca(2+)-ATPase, sulfhydryl content and protein solubility levels added with 3%, 6%, 9% and 12% polydextrose can be maintained until the 6 months of storage by 47.33%, 41.60% and 51.41%, respectively. Differential scanning calorimetry showed decreases in thermal stabilization of myosin with regard to transition termperature. Analysis by scanning electron microscopy demonstrated that the number of pores formed was increased after storage. This study suggested that surimi stored with the polydextrose as a cryoprotectant was able to maintain physicochemical of surimi better compared to raw surimi with no additives or raw surimi with sodium tripolyphosphate.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links