Displaying publications 21 - 40 of 379 in total

Abstract:
Sort:
  1. Dikshit A, Pradhan B, Alamri AM
    Sci Total Environ, 2021 Feb 10;755(Pt 2):142638.
    PMID: 33049536 DOI: 10.1016/j.scitotenv.2020.142638
    Drought forecasting with a long lead time is essential for early warning systems and risk management strategies. The use of machine learning algorithms has been proven to be beneficial in forecasting droughts. However, forecasting at long lead times remains a challenge due to the effects of climate change and the complexities involved in drought assessment. The rise of deep learning techniques can solve this issue, and the present work aims to use a stacked long short-term memory (LSTM) architecture to forecast a commonly used drought measure, namely, the Standard Precipitation Evaporation Index. The model was then applied to the New South Wales region of Australia, with hydrometeorological and climatic variables as predictors. The multivariate interpolated grid of the Climatic Research Unit was used to compute the index at monthly scales, with meteorological variables as predictors. The architecture was trained using data from the period of 1901-2000 and tested on data from the period of 2001-2018. The results were then forecasted at lead times ranging from 1 month to 12 months. The forecasted results were analysed in terms of drought characteristics, such as drought intensity, drought onset, spatial extent and number of drought months, to elucidate how these characteristics improve the understanding of drought forecasting. The drought intensity forecasting capability of the model used two statistical metrics, namely, the coefficient of determination (R2) and root-mean-square error. The variation in the number of drought months was examined using the threat score technique. The results of this study showed that the stacked LSTM model can forecast effectively at short-term and long-term lead times. Such findings will be essential for government agencies and can be further tested to understand the forecasting capability of the presented architecture at shorter temporal scales, which can range from days to weeks.
  2. Birkmann J, Jamshed A, McMillan JM, Feldmeyer D, Totin E, Solecki W, et al.
    Sci Total Environ, 2022 Jan 10;803:150065.
    PMID: 34525713 DOI: 10.1016/j.scitotenv.2021.150065
    Climate change is a severe global threat. Research on climate change and vulnerability to natural hazards has made significant progress over the last decades. Most of the research has been devoted to improving the quality of climate information and hazard data, including exposure to specific phenomena, such as flooding or sea-level rise. Less attention has been given to the assessment of vulnerability and embedded social, economic and historical conditions that foster vulnerability of societies. A number of global vulnerability assessments based on indicators have been developed over the past years. Yet an essential question remains how to validate those assessments at the global scale. This paper examines different options to validate global vulnerability assessments in terms of their internal and external validity, focusing on two global vulnerability indicator systems used in the WorldRiskIndex and the INFORM index. The paper reviews these global index systems as best practices and at the same time presents new analysis and global results that show linkages between the level of vulnerability and disaster outcomes. Both the review and new analysis support each other and help to communicate the validity and the uncertainty of vulnerability assessments. Next to statistical validation methods, we discuss the importance of the appropriate link between indicators, data and the indicandum. We found that mortality per hazard event from floods, drought and storms is 15 times higher for countries ranked as highly vulnerable compared to those classified as low vulnerable. These findings highlight the different starting points of countries in their move towards climate resilient development. Priority should be given not just to those regions that are likely to face more severe climate hazards in the future but also to those confronted with high vulnerability already.
  3. Norbäck D, Hashim JH, Hashim Z, Ali F
    Sci Total Environ, 2017 Aug 15;592:153-160.
    PMID: 28319702 DOI: 10.1016/j.scitotenv.2017.02.215
    This paper studied associations between volatile organic compounds (VOC), formaldehyde, nitrogen dioxide (NO2) and carbon dioxide (CO2) in schools in Malaysia and rhinitis, ocular, nasal and dermal symptoms, headache and fatigue among students. Pupils from eight randomly selected junior high schools in Johor Bahru, Malaysia (N=462), participated (96%). VOC, formaldehyde and NO2 were measured by diffusion sampling (one week) and VOC also by pumped air sampling during class. Associations were calculated by multi-level logistic regression adjusting for personal factors, the home environment and microbial compounds in the school dust. The prevalence of weekly rhinitis, ocular, throat and dermal symptoms were 18.8%, 11.6%, 15.6%, and 11.1%, respectively. Totally 20.6% had weekly headache and 22.1% fatigue. Indoor CO2 were low (range 380-690 ppm). Indoor median NO2 and formaldehyde concentrations over one week were 23μg/m3 and 2.0μg/m3, respectively. Median indoor concentration of toluene, ethylbenzene, xylene, and limonene over one week were 12.3, 1.6, 78.4 and 3.4μg/m3, respectively. For benzaldehyde, the mean indoor concentration was 2.0μg/m3 (median<1μg/m3). Median indoor levels during class of benzene and cyclohexane were 4.6 and 3.7μg/m3, respectively. NO2 was associated with ocular symptoms (p<0.001) and fatigue (p=0.01). Formaldehyde was associated with ocular (p=0.004), throat symptoms (p=0.006) and fatigue (p=0.001). Xylene was associated with fatigue (p<0.001) and benzaldehyde was associated with headache (p=0.03). In conclusion, xylene, benzaldehyde, formaldehyde and NO2 in schools can be risk factors for ocular and throat symptoms and fatigue among students in Malaysia. The indoor and outdoor levels of benzene were often higher than the EU standard of 5μg/m3.
  4. Sakai N, Mohd Yusof R, Sapar M, Yoneda M, Ali Mohd M
    Sci Total Environ, 2016 Apr 01;548-549:43-50.
    PMID: 26799806 DOI: 10.1016/j.scitotenv.2016.01.040
    Beta-agonists and sulfonamides are widely used for treating both humans and livestock for bronchial and cardiac problems, infectious disease and even as growth promoters. There are concerns about their potential environmental impacts, such as producing drug resistance in bacteria. This study focused on their spatial distribution in surface water and the identification of pollution sources in the Langat River basin, which is one of the most urbanized watersheds in Malaysia. Fourteen beta-agonists and 12 sulfonamides were quantitatively analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A geographic information system (GIS) was used to visualize catchment areas of the sampling points, and source profiling was conducted to identify the pollution sources based on a correlation between a daily pollutant load of the detected contaminant and an estimated density of human or livestock population in the catchment areas. As a result, 6 compounds (salbutamol, sulfadiazine, sulfapyridine, sulfamethazine, sulfadimethoxine and sulfamethoxazole) were widely detected in mid catchment areas towards estuary. The source profiling indicated that the pollution sources of salbutamol and sulfamethoxazole were from sewage, while sulfadiazine was from effluents of cattle, goat and sheep farms. Thus, this combination method of quantitative and spatial analysis clarified the spatial distribution of these drugs and assisted for identifying the pollution sources.
  5. Camara M, Jamil NR, Abdullah AFB, Hashim RB, Aliyu AG
    Sci Total Environ, 2020 May 30;737:139800.
    PMID: 32526579 DOI: 10.1016/j.scitotenv.2020.139800
    The evaluation of the importance of having accurate and representative stations in a network for river water quality monitoring is always a matter of concern. The minimal budget and time demands of water quality monitoring programme may appear very attractive, especially when dealing with large-scale river watersheds. This article proposes an improved methodology for optimising water quality monitoring network for present and forthcoming monitoring of water quality under a case study of the Selangor River watershed in Malaysia, where different monitoring networks are being used by water management authorities. Knowing that the lack of financial resources in developing countries like Malaysia is one of the reasons for inadequate monitoring network density, to identify an optimised network for cost-efficiency benefits in this study, a geo-statistical technique coupled Kendall's W was first applied to analyse the performance of each monitoring station in the existing networks under the monitored water quality parameters. Second, the present and future changes in non-point pollution sources were simulated using the integrated Cellular Automata and Markov chain model (CA-Markov). Third, Station Potential Pollution Score (SPPS) determined based on Analytic Hierarchy Process (AHP) was used to weight each station under the changes of non-point pollution sources for 2015, 2024, and 2033 prior to prioritisation. Finally, according to the Kendall's W test on kriging results, the weights of non-point sources from the AHP evaluation and fuzzy membership functions, six most efficient sampling stations were identified to build a robust network for the present and future monitoring of water quality status in the Selangor River watershed. This study proposes a useful approach to the pertinent agencies and management authority concerned to establish appropriate methods for developing an efficient water quality monitoring network for tropical rivers.
  6. Ghumman ASM, Shamsuddin R, Abbasi A, Ahmad M, Yoshida Y, Sami A, et al.
    Sci Total Environ, 2024 Jan 15;908:168034.
    PMID: 37924888 DOI: 10.1016/j.scitotenv.2023.168034
    Inverse vulcanized polysulfides (IVP) are promising sulfur-enriched copolymers with unconventional properties irresistible for diverse applications like Hg2+ remediation. Nevertheless, due to their inherent hydrophobic nature, these copolymers still offer low Hg2+ uptake capacity. Herein, we reported the synthesis of IVP by reacting molten sulfur with 4-vinyl benzyl chloride, followed by their functionalization using N-methyl D-glucamine (NMDG) to increase the hydration of the developed IVP. The chemical composition and structure of the functionalized IVP were proposed based on FTIR and XPS analysis. The functionalized IVP demonstrated a high mercury adsorption capacity of 608 mg/g (compared to <26 mg/g for common IVP) because of rich sulfur and hydrophilic regions. NMDG functionalized IVP removed 100 % Hg2+ from a low feed concentration (10-50 mg/l). A predictive machine learning model was also developed to predict the amount of mercury removed (%) using GPR, ANN, Decision Tree, and SVM algorithms. Hyperparameter and loss function optimization was also carried out to reduce the prediction error. The optimized GPR algorithm demonstrated high R2 (0.99 (training) and 0.98 (unseen)) and low RMSE (2.74 (training) and 2.53 (unseen)) values indicating its goodness in predicting the amount of mercury removed. The produced functionalized IVP can be regenerated and reused with constant Hg2+ uptake capacity. Sulfur is the waste of the petrochemical industry and is abundantly available, making the functionalized IVP a sustainable and cheap adsorbent that can be produced for high-volume Hg2+ remediation. ENVIRONMENTAL IMPLICATION: This research effectively addresses the removal of the global top-priority neurotoxic pollutant mercury, which is toxic even at low concentrations. We attempted to remove the Hg2+ utilizing an inexpensive adsorbent developed by NMDG functionalized copolymer of molten sulfur and VBC. A predictive machine learning model was also formulated to predict the amount of mercury removal from wastewater with only a 0.05 % error which shows the goodness of the developed model. This work is critical in utilizing this low-cost adsorbent and demonstrates its potential for large-scale industrial application.
  7. Rahim F, Abdullah SRS, Hasan HA, Kurniawan SB, Mamat A, Yusof KA, et al.
    Sci Total Environ, 2022 Mar 25;814:152799.
    PMID: 34982990 DOI: 10.1016/j.scitotenv.2021.152799
    A reedbed system planted with Phragmites australis was implemented to treat chlorinated hydrocarbon-contaminated groundwater in an industrial plant area. Reedbed commissioning was conducted from July 2016 to November 2016 to treat contaminated groundwater via a pump-and-treat mechanism. Combination of horizontal and vertical reedbed systems was applied to treat 1,2-dichloroethane (1,2 DCA) under four parallel installations. The 2-acre horizontal and vertical reedbed systems were designed to treat approximately 305 m3/day of pumped groundwater. Initial concentration of 1,2 DCA was observed at 0.362 mg/L to 4320 mg/L, and the reedbed system successfully reduced the concentration up to 67.9%. The average outlet concentration was measured to be 2.08 mg/L, which was lower than the site-specific target level of 156 mg/L. Natural attenuation analysis was conducted using first-order decay kinetics, showing an average natural attenuation rate of 0.00372/year. Natural attenuation of 1,2 DCA was observed in shallow monitoring wells, which was indicated by the reduction trend of 1,2 DCA concentration, thereby confirming that the reedbed system worked well to remove 1.2 DCA from contaminated groundwater at the shallow profile.
  8. Lani NHM, Syafiuddin A, Yusop Z, Adam UB, Amin MZBM
    Sci Total Environ, 2018 Sep 15;636:1171-1179.
    PMID: 29913579 DOI: 10.1016/j.scitotenv.2018.04.418
    A rainwater harvesting system (RWHS) was proposed for small and large commercial buildings in Malaysia as an alternative water supply for non-potable water consumption. The selected small and large commercial buildings are AEON Taman Universiti and AEON Bukit Indah, respectively. Daily rainfall data employed in this work were obtained from the nearest rainfall station at Senai International Airport, which has the longest and reliable rainfall record (29 years). Water consumption at both buildings were monitored daily and combined with the secondary data obtained from the AEON's offices. The mass balance model was adopted as the simulation approach. In addition, the economic benefits of RWHS in terms of percentage of reliability (R), net present value (NPV), return on investment (ROI), benefit-cost ratio (BCR), and payback period (PBP) were examined. Effects of rainwater tank sizes and water tariffs on the economic indicators were also evaluated. The results revealed that the percentages of reliability of the RWHS for the small and large commercial buildings were up to 93 and 100%, respectively, depending on the size of rainwater tank use. The economic benefits of the proposed RWHS were highly influenced by the tank size and water tariff. At different water tariffs between RM3.0/m3 and RM4.7/m3, the optimum PBPs for small system range from 6.5 to 10.0 years whereas for the large system from 3.0 to 4.5 years. Interestingly, the large commercial RWHS offers better NPV, ROI, BCR, and PBP compared to the small system, suggesting more economic benefits for the larger system.
  9. Ibrahim YS, Hamzah SR, Khalik WMAWM, Ku Yusof KMK, Anuar ST
    Sci Total Environ, 2021 Sep 20;788:147809.
    PMID: 34034173 DOI: 10.1016/j.scitotenv.2021.147809
    This study reports the distribution of microplastics (MPs) in surface water and estuarine sediments in South and North Setiu Wetland in the South China Sea. Sampling was conducted bimonthly for one year from November 2016 to November 2017, including the northeast and southwest monsoons. Water surface and sediment samples were collected from six different sampling stations (STs). Samples were sorted based on physical analysis (optical observation) and selected particles were further analyzed by chemical characterizations. The findings of this study indicate that a total of 0.36 items/L and 5.97 items/g particles of MPs were found from characterizations surface water and dry sediment, respectively. Among the selected stations included in this research, ST3 (1.375 ± 0.347 items/L) and ST2 (14.250 ± 4.343 items/g) were individually identified as high potential MP sinking areas, exacerbated during the northeast and southwest monsoons. Transparent, film, and filament MP types were consistently found across all stations. Microplastic filaments revealed a functional group of polypropylenes based on the main peak spectrum at 2893-2955 cm-1 (CH alkyl stretching), 1458 cm-1 (CH2 bending), and 1381 cm-1 (CH3 bending). Microplastic materials were thermally decomposed by pyrolysis-gas chromatography-mass spectrometry (Pyr-GC/MS) and identified as cyclohexane and cyclohexene derivatives, as well as precursors of polymer blends. The distribution of MPs in both matrices varied according to different seasons. These findings provide useful baseline information on the distribution of MPs from the estuarine area in Malaysia and South China Sea waters.
  10. Junaid M, Sultan M, Liu S, Hamid N, Yue Q, Pei DS, et al.
    Sci Total Environ, 2024 Mar 20;917:170535.
    PMID: 38307287 DOI: 10.1016/j.scitotenv.2024.170535
    Owing to a wide range of advantages, such as stability, non-invasiveness, and ease of sampling, hair has been used progressively for comprehensive biomonitoring of organic pollutants for the last three decades. This has led to the development of new analytical and multi-class analysis methods for the assessment of a broad range of organic pollutants in various population groups, ranging from small-scale studies to advanced studies with a large number of participants based on different exposure settings. This meta-analysis summarizes the existing literature on the assessment of organic pollutants in hair in terms of residue levels, the correlation of hair residue levels with those of other biological matrices and socio-demographic factors, the reliability of hair versus other biomatrices for exposure assessment, the use of segmental hair analysis for chronic exposure evaluation and the effect of external contamination on hair residue levels. Significantly high concentrations of organic pollutants such as pesticides, flame retardants, polychlorinated biphenyls and polycyclic aromatic hydrocarbon were reported in human hair samples from different regions and under different exposure settings. Similarly, high concentrations of pesticides (from agricultural activities), flame retardants (E-waste dismantling activities), dioxins and furans were observed in various occupational settings. Moreover, significant correlations (p 
  11. Womersley FC, Rohner CA, Abrantes K, Afonso P, Arunrugstichai S, Bach SS, et al.
    Sci Total Environ, 2024 Apr 30.
    PMID: 38697520 DOI: 10.1016/j.scitotenv.2024.172776
    The expansion of the world's merchant fleet poses a great threat to the ocean's biodiversity. Collisions between ships and marine megafauna can have population-level consequences for vulnerable species. The Endangered whale shark (Rhincodon typus), shares a circumglobal distribution with this expanding fleet and tracking of movement pathways has shown that large vessel collisions pose a major threat to the species. However, it is not yet known whether they are also at risk within aggregation sites, where up to 400 individuals can gather to feed on seasonal bursts of planktonic productivity. These "constellation" sites are of significant ecological, socio-economic and cultural value. Here, through expert elicitation, we gathered information from most known constellation sites for this species across the world (>50 constellations and >13,000 individual whale sharks). We defined the spatial boundaries of these sites and their overlap with shipping traffic. Sites were then ranked based on relative levels of potential collision danger posed to whale sharks in the area. Our results showed that researchers and resource managers may underestimate the threat posed by large ship collisions due to a lack of direct evidence, such as injuries or witness accounts, which are available for other, sub-lethal threat categories. We found that constellations in the Arabian Sea and adjacent waters, the Gulf of Mexico, the Gulf of California, and Southeast and East Asia, had the greatest level of vessel collision threat. We also identified 39 sites where peaks in shipping activity coincided with peak seasonal occurrences of whale sharks, sometimes across several months. Simulated potential collision mitigation options estimated a minimal impact to industry, as most whale shark core habitat areas were relatively small. Given the threat posed by vessel collisions, a coordinated, multi-national approach to collision mitigation is needed within priority whale shark habitats to ensure collision protection for the species.
  12. Praveena SM, Shaifuddin SNM, Sukiman S, Nasir FAM, Hanafi Z, Kamarudin N, et al.
    Sci Total Environ, 2018 Nov 15;642:230-240.
    PMID: 29902621 DOI: 10.1016/j.scitotenv.2018.06.058
    This study investigated the occurrence of nine pharmaceuticals (amoxicillin, caffeine, chloramphenicol, ciprofloxacin, dexamethasone, diclofenac, nitrofurazone, sulfamethoxazole, and triclosan) and to evaluate potential risks (human health and ecotoxicological) in Lui, Gombak and Selangor (Malaysia) rivers using commercial competitive Enzyme-Linked Immunosorbent Assay (ELISA) kit assays. Physicochemical properties of these rivers showed the surface samples belong to Class II of Malaysian National Water Quality Standards which requires conventional treatment before consumption. All the pharmaceuticals were detected in all three rivers except for triclosan, dexamethasone and diclofenac which were not detected in few of sampling locations in these three rivers. Highest pharmaceutical concentrations were detected in Gombak river in line of being as one of the most polluted rivers in Malaysia. Ciprofloxacin concentrations were detected in all the sampling locations with the highest at 299.88 ng/L. While triclosan, dexamethasone and diclofenac concentrations were not detected in a few of sampling locations in these three rivers. All these nine pharmaceuticals were within the levels reported previously in literature. Pharmaceutical production, wastewater treatment technologies and treated sewage effluent were found as the potential sources which can be related with pharmaceuticals occurrence in surface water samples. Potential human risk assessment showed low health risk except for ciprofloxacin and dexamethasone. Instead, ecotoxicological risk assessment indicated moderate risks were present for these rivers. Nevertheless, results confirmation using instrumental techniques is needed for higher degree of specificity. It is crucial to continuously monitor the surface water bodies for pharmaceuticals using a cost-effective prioritisation approach to assess sensitive sub-populations risk.
  13. Sheikhy Narany T, Sefie A, Aris AZ
    Sci Total Environ, 2018 Jul 15;630:931-942.
    PMID: 29499548 DOI: 10.1016/j.scitotenv.2018.02.190
    In many regions around the world, there are issues associated with groundwater resources due to human and natural factors. However, the relation between these factors is difficult to determine due to the large number of parameters and complex processes required. In order to understand the relation between land use allocations, the intrinsic factors of the aquifer, climate change data and groundwater chemistry in the multilayered aquifer system in Malaysia's Northern Kelantan Basin, twenty-two years hydrogeochemical data set was used in this research. The groundwater salinisation in the intermediate aquifer, which mainly extends along the coastal line, was revealed through the hydrogeochemical investigation. Even so, there had been no significant trend detected on groundwater salinity from 1989 to 2011. In contrast to salinity, as seen from the nitrate contaminations there had been significantly increasing trends in the shallow aquifer, particularly in the central part of the study area. Additionally, a strong association between high nitrate values and the areas covered with palm oil cultivations and mixed agricultural have been detected by a multiple correspondence analysis (MCA), which implies that the increasing nitrate concentrations are associated with nitrate loading from the application of N-fertilisers. From the process of groundwater salinisation in the intermediate aquifer, could be seen that it has a strong correlation the aquifer lithology, specifically marine sediments which are influenced by the ancient seawater trapped within the sediments.
  14. Taha BA, Al Mashhadany Y, Al-Jubouri Q, Rashid ARBA, Luo Y, Chen Z, et al.
    Sci Total Environ, 2023 Jul 01;880:163333.
    PMID: 37028663 DOI: 10.1016/j.scitotenv.2023.163333
    Constantly mutating SARS-CoV-2 is a global concern resulting in COVID-19 infectious waves from time to time in different regions, challenging present-day diagnostics and therapeutics. Early-stage point-of-care diagnostic (POC) biosensors are a crucial vector for the timely management of morbidity and mortalities caused due to COVID-19. The state-of-the-art SARS-CoV-2 biosensors depend upon developing a single platform for its diverse variants/biomarkers, enabling precise detection and monitoring. Nanophotonic-enabled biosensors have emerged as 'one platform' to diagnose COVID-19, addressing the concern of constant viral mutation. This review assesses the evolution of current and future variants of the SARS-CoV-2 and critically summarizes the current state of biosensor approaches for detecting SARS-CoV-2 variants/biomarkers employing nanophotonic-enabled diagnostics. It discusses the integration of modern-age technologies, including artificial intelligence, machine learning and 5G communication with nanophotonic biosensors for intelligent COVID-19 monitoring and management. It also highlights the challenges and potential opportunities for developing intelligent biosensors for diagnosing future SARS-CoV-2 variants. This review will guide future research and development on nano-enabled intelligent photonic-biosensor strategies for early-stage diagnosing of highly infectious diseases to prevent repeated outbreaks and save associated human mortalities.
  15. Talebi A, Razali YS, Ismail N, Rafatullah M, Azan Tajarudin H
    Sci Total Environ, 2020 Mar 10;707:134533.
    PMID: 31865088 DOI: 10.1016/j.scitotenv.2019.134533
    An adsorption-desorption process was applied on fermented landfill leachate to adsorb and recover acetic and butyric acid, using activated carbon. In this study, the first, volatile fatty acids adsorption process from fermented leachate was optimized, by investigating various affecting factors such as pH, time, agitation speed, activated carbon dosage, and temperature. The optimum condition for maximum adsorption of 88.94% acetic acid and 98.53% butyric acid, was 19.79 %wt activated carbon dosage, 40.00 rpm of agitation speed, in 9.45 °C and contact time of 179.89 h, while the pH of the substrate was kept fixed at pH:3.0. Results of X-ray fluorescence (XRF) spectrometry, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and zeta potential revealed that carbon is the dominant component in the adsorbent with a significant effect to remove organic impurities, and it was observed that the activated carbon after the adsorption process showed an amorphous structure peak with a large internal surface area and pore volume. The results exposed that the adsorption on the surface of activated carbon was due to the chemisorption, and the chemisorption mechanism was supported by covalent bonding. The kinetic study displayed excellent fit to Pseudo-second order kinetics model. The second phase of this study was to recover the adsorbed VFAs using multistage desorption unit, in which application of deionized water and ethanol (as desorption agents) resulted in 89.1% of acetic acid and 67.8% of the butyric acid recovery.
  16. Saharudin DM, Jeswani HK, Azapagic A
    Sci Total Environ, 2024 Apr 01;919:170266.
    PMID: 38253094 DOI: 10.1016/j.scitotenv.2024.170266
    Biochar used for soil amendment is considered a viable negative emissions technology as it can be produced easily from a wide range of biomass feedstocks, while offering numerous potential agricultural benefits. This research is the first to present a comprehensive sustainability assessment of large-scale biochar production and application in Malaysia. The five feedstocks considered comprise the country's most abundant agricultural wastes from palm oil (empty fruit bunches, fibres, palm fronds and shells) and rice (straw) plantations. Combined with process simulation, life cycle assessment and life cycle costing are used to assess the sustainability of biochar production via slow pyrolysis at different temperatures (300-600 °C), considering two functional units: i) production and application of 1 t of biochar; and ii) removal of 1 t of CO2from the atmosphere. The cradle-to-grave system boundary comprises all life cycle stages from biomass acquisition to biochar use for soil amendment. The positive impacts of the latter, such as carbon sequestration, fertiliser avoidance and reduction in soil N2O emissions, are also included. The global warming potential (GWP) is net-negative in all scenarios, ranging from -436 to -2,085 kg CO2 eq./t biochar and -660 to -933 kg CO2 eq./t CO2 removed. Per t of biochar, the systems with shells have the lowest GWP and those with straw the highest, all showing better performance if produced at higher pyrolysis temperatures. However, the temperature trend is opposite for all other 17 impacts considered, with fibres being the best option and fronds the worst for most categories. Per t CO2 removed, fronds have the highest impact in eight categories, including GWP, and shells the lowest in most categories. All impacts are lower for biochar production at higher temperatures. The main hotspot is the pyrolysis process, influencing the majority of impact categories and contributing 66-75 % to the life cycle costs. The costs range from US$116-197/t biochar and US$60-204/t CO2 removed. The least expensive systems per t biochar are those with straws and per t CO2 removed those with shells, while fronds are the worst option economically for both functional units. Utilising all available feedstocks could remove 6-12.4 Mt of CO2 annually, reducing the national emissions from the agricultural sector by up to 54 % and saving US$36.05 M annually on fertilisers imports. These results will be of interest to policy makers in Malaysia and other regions with abundant agricultural wastes.
  17. Wan Mohtar WHM, Nawang SAB, Abdul Maulud KN, Benson YA, Azhary WAHWM
    Sci Total Environ, 2017 Nov 15;598:525-537.
    PMID: 28454026 DOI: 10.1016/j.scitotenv.2017.04.093
    This study investigates the textural characteristics of sediments collected at eroded and deposited areas of highly severed eroded coastline of Batu Pahat, Malaysia. Samples were taken from systematically selected 23 locations along the 67km stretch of coastline and are extended to the fluvial sediments of the main river of Batu Pahat. Grain size distribution analysis was conducted to identify its textural characteristics and associated sedimentary transport behaviours. Sediments obtained along the coastline were fine-grained material with averaged mean size of 7.25 ϕ, poorly sorted, positively skewed and has wide distributions. Samples from eroded and deposition regions displayed no distinctive characteristics and exhibited similar profiles. The high energy condition transported the sediments as suspension, mostly as pelagic and the sediments were deposited as shallow marine and agitated deposits. The fluvial sediments of up to 3km into the river have particularly similar profile of textural characteristics with the neighbouring marine sediments from the river mouth. Profiles were similar with marine sediments about 3km opposite the main current and can go up to 10km along the current of Malacca Straits.
  18. Choo SW, Chong JL, Gaubert P, Hughes AC, O'Brien S, Chaber AL, et al.
    Sci Total Environ, 2022 Feb 14.
    PMID: 35176378 DOI: 10.1016/j.scitotenv.2022.153666
  19. Garcia C, Gibbins CN, Pardo I, Batalla RJ
    Sci Total Environ, 2017 Feb 15;580:1453-1459.
    PMID: 28027801 DOI: 10.1016/j.scitotenv.2016.12.119
    Here we provide the first evidence of long term reductions in flow in temporary streams on the Mediterranean island of Mallorca and use a simple metric of the degree of water permanence (the number of days with water) to highlight the implications of flow change for aquatic invertebrate diversity. Analysis of a 33year data set for 13 streams on the island yielded evidence of consistent downward trends in water permanence, particularly in spring and summer. Data from 27 relatively undisturbed mountain streams indicate that the diversity of benthic invertebrates in temporary streams across the island is directly related to water permanence. Streams with lower values of water permanence support few species overall and have less abundant invertebrate assemblages; the abundance and species richness of sensitive mayfly, stonefly and caddisfly taxonomic groups is also reduced in streams with lower water permanence. Although developed using spatial data, these flow-invertebrate relationships suggest that future reductions in water permanence may lead to reduced diversity. We argue that the 'number of days with water' is a simple but ecologically-relevant metric of water permanence that can be used effectively to monitor change in threatened temporary streams worldwide.
  20. Solarin SA, Bello MO
    Sci Total Environ, 2020 Apr 10;712:135594.
    PMID: 31787295 DOI: 10.1016/j.scitotenv.2019.135594
    Environmental degradation remains a huge obstacle to sustainable development. Research on the factors that promote or degrade the environment has been extensively conducted. However, one important variable that has conspicuously received very limited attention is energy innovations. To address this gap in the literature, this study investigated the effects of energy innovations on environmental quality in the U.S. for the period 1974 to 2016. We have incorporated GDP and immigration as additional regressors. Three indices comprising of CO2 emissions, ecological footprint and carbon footprint were used to proxy environmental degradation. The cointegration tests established long-run relationships between the variables. Using a maximum likelihood approach with a break, the results showed evidence that energy innovations significantly improve environmental quality while GDP degrades the quality of the environment, and immigration has no significant effect on the environment. Policy implications of the results are discussed in the body of the manuscript.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links