Displaying publications 21 - 27 of 27 in total

Abstract:
Sort:
  1. Hanizah N, Affirul CA, Farah NA, Shamila MA, Ridzuan MI
    Clin Ter, 2016 Nov-Dec;167(6):182-184.
    PMID: 28051822 DOI: 10.7417/CT.2016.1969
    Hereditary angioedema (HAE) is a rare and potentially life threatening autosomal dominant disease characterized by recurrent episodes of cutaneous and mucosal oedema. It results from reduced expression or loss of function of CI-esterase inhibitors (C1-INH). As opposed to the more common histamine-mediated angioedema, HAE does not respond well to conventional treatments with anti-histamines, steroids and adrenaline. Early recognition and timely intervention with the correct treatment are crucial particularly preventing airway obstruction. New disease specific treatment including plasma derived or recombinant C1-INH, ecallantide and icatibant have recently emerged and its appropriate use can reduce HAE-associated mortality and morbidity. However due to its costs, these disease specific treatments have yet to reach Malaysia. Despite that no randomized clinical trial on FFP has been performed, its efficacy in treating acute attacks of HAE is only demonstrated in case studies. This case report illustrates the successful treatment of acute HAE episode with FFP in a Malaysian government hospital setting.
    Matched MeSH terms: Blood Coagulation/drug effects
  2. Ng DPJ, Duffull SB, Faed JM, Isbister GK, Gulati A
    Clin Appl Thromb Hemost, 2018 May;24(4):669-676.
    PMID: 28731370 DOI: 10.1177/1076029617711802
    A well-accepted test for monitoring anticoagulation by enoxaparin is not currently available. As inadequate dosing may result in thrombosis or bleeding, a clinical need exists for a suitable test. Previous in silico and in vitro studies have identified factor Xa as an appropriate activating agent, and the phospholipid Actin FS as a cofactor for a Xa clotting time (TenaCT) test. A proof-of-concept study was designed to (1) explore the reproducibility of the TenaCT test and (2) explore factors that could affect the performance of the test. In vitro clotting time tests were carried out using plasma from 20 healthy volunteers. The effect of enoxaparin was determined at concentrations of 0.25, 0.50, and 1.0 IU/mL. Clotting times for the volunteers were significantly prolonged with increasing enoxaparin concentrations. Clotting times were significantly shortened for frozen plasma samples. No significant differences in prolongation of clotting times were observed between male and female volunteers or between the 2 evaluated age groups. The clotting times were consistent between 2 separate occasions. The TenaCT test was able to distinguish between the subtherapeutic and therapeutic concentrations of enoxaparin. Plasma should not be frozen prior to performing the test, without defining a frozen plasma reference range. This study provided proof-of-concept for a Xa-based test that can detect enoxaparin dose effects, but additional studies are needed to further develop the test.
    Matched MeSH terms: Blood Coagulation/drug effects*
  3. Ooi CH, Ling YP, Abdullah WZ, Mustafa AZ, Pung SY, Yeoh FY
    J Mater Sci Mater Med, 2019 Mar 30;30(4):44.
    PMID: 30929088 DOI: 10.1007/s10856-019-6247-5
    Hydroxyapatite is an ideal biomaterial for bone tissue engineering due to its biocompatibility and hemocompatibility which have been widely studied by many researchers. The incorporation of nanoporosity into hydroxyapatite could transform the biomaterial into an effective adsorbent for uremic toxins removal especially in artificial kidney system. However, the effect of nanoporosity incorporation on the hemocompatibility of hydroxyapatite has yet to be answered. In this study, nanoporous hydroxyapatite was synthesized using hydrothermal technique and its hemocompatibility was determined. Non-ionic surfactants were used as soft templates to create porosity in the hydroxyapatite. The presence of pure hydroxyapatite phase in the synthesized samples is validated by X-ray diffraction analysis and Fourier transform infrared spectroscopy. The TEM images show that the hydroxyapatite formed rod-like particles with the length of 21-90 nm and diameter of 11-70 nm. The hydroxyapatite samples exhibit BET surface area of 33-45 m2 g-1 and pore volume of 0.35-0.44 cm3 g-1. The hemocompatibility of the hydroxyapatite was determined via hemolysis test, platelet adhesion, platelet activation and blood clotting time measurement. The nanoporous hydroxyapatite shows less than 5% hemolysis, suggesting that the sample is highly hemocompatible. There is no activation and morphological change observed on the platelets adhered onto the hydroxyapatite. The blood clotting time demonstrates that the blood incubated with the hydroxyapatite did not coagulate. This study summarizes that the synthesized nanoporous hydroxyapatite is a highly hemocompatible biomaterial and could potentially be utilized in biomedical applications.
    Matched MeSH terms: Blood Coagulation/drug effects*
  4. Hasan SS, Radford S, Kow CS, Zaidi STR
    J Thromb Thrombolysis, 2020 Nov;50(4):814-821.
    PMID: 32748122 DOI: 10.1007/s11239-020-02235-z
    Many aspects of care such as management of hypercoagulable state in COVID-19 patients, especially those admitted to intensive care units is challenging in the rapidly evolving pandemic of novel coronavirus disease 2019 (COVID-19). We seek to systematically review the available evidence regarding the anticoagulation approach to prevent venous thromboembolism (VTE) among COVID-19 patients admitted to intensive care units. Electronic databases were searched for studies reporting venous thromboembolic events in patients admitted to the intensive care unit receiving any type of anticoagulation (prophylactic or therapeutic). The pooled prevalence (and 95% confidence interval [CI]) of VTE among patients receiving anticoagulant were calculated using the random-effects model. Subgroup pooled analyses were performed with studies reported prophylactic anticoagulation alone and with studies reported mixed prophylactic and therapeutic anticoagulation. We included twelve studies (8 Europe; 2 UK; 1 each from the US and China) in our systematic review and meta-analysis. All studies utilized LMWH or unfractionated heparin as their pharmacologic thromboprophylaxis, either prophylactic doses or therapeutic doses. Seven studies reported on the proportion of patients with the previous history of VTE (range 0-10%). The pooled prevalence of VTE among ICU patients receiving prophylactic or therapeutic anticoagulation across all studies was 31% (95% CI 20-43%). Subgroup pooled analysis limited to studies reported prophylactic anticoagulation alone and mixed (therapeutic and prophylactic anticoagulation) reported pooled prevalences of VTE of 38% (95% CI 10-70%) and 27% (95% CI 17-40%) respectively. With a high prevalence of thromboprophylaxis failure among COVID-19 patients admitted to intensive care units, individualised rather than protocolised VTE thromboprophylaxis would appear prudent at interim.
    Matched MeSH terms: Blood Coagulation/drug effects*
  5. Fong AYY, Tiong LL, Tan SSN, Geruka D, Apil GG, Choo CW, et al.
    Clin Appl Thromb Hemost, 2020 12 8;26:1076029620972473.
    PMID: 33284050 DOI: 10.1177/1076029620972473
    Routine coagulation tests do not enable rapid, accurate determination of direct oral anticoagulant (DOAC) therapy. The ecarin clotting assay (ECA), performed on the ClotPro viscoelastic testing device, may enable sensitive and specific detection of dabigatran. We assessed the association between trough plasma dabigatran concentration and clotting time (CT) in the ClotPro ECA, in patients with non-valvular atrial fibrillation (NVAF). Each patient provided a single venous blood sample, ∼1 hour before dabigatran dosing. The study included 118 patients, of whom 64 were receiving dabigatran 110 mg twice daily and 54 were receiving 150 mg twice daily. ECA CT was moderately correlated with trough plasma dabigatran concentration (r = 0.80, p < 0.001). Slight trends toward increased plasma dabigatran concentration and prolonged ECA CT were apparent with 150 mg versus the 110 mg dose (differences not statistically significant). Individuals with creatinine clearance below 50 mL/minute had significantly higher plasma dabigatran concentrations and significantly prolonged ECA CT versus those with creatinine clearance ≥50 mL/minute. In conclusion, this preliminary study has demonstrated that CT in the ClotPro ECA reflects the plasma concentration of dabigatran in patients with NVAF. The ECA could potentially be used to assess the impact of dabigatran on a patient's coagulation status.
    Matched MeSH terms: Blood Coagulation/drug effects*
  6. Aslam Khan MU, Haider A, Abd Razak SI, Abdul Kadir MR, Haider S, Shah SA, et al.
    J Tissue Eng Regen Med, 2021 04;15(4):322-335.
    PMID: 33432773 DOI: 10.1002/term.3168
    The importance of bone scaffolds has increased many folds in the last few years; however, during bone implantation, bacterial infections compromise the implantation and tissue regeneration. This work is focused on this issue while not compromising on the properties of a scaffold for bone regeneration. Biocomposite scaffolds (BS) were fabricated via the freeze-drying technique. The samples were characterized for structural changes, surface morphology, porosity, and mechanical properties through spectroscopic (Fourier transform-infrared [FT-IR]), microscopic (scanning electron microscope [SEM]), X-ray (powder X-ray diffraction and energy-dispersive X-ray), and other analytical (Brunauer-Emmett-Teller, universal testing machine Instron) techniques. Antibacterial, cellular, and hemocompatibility assays were performed using standard protocols. FT-IR confirmed the interactions of all the components. SEM illustrated porous and interconnected porous morphology. The percentage porosity was in the range of 49.75%-67.28%, and the pore size was 215.65-470.87 µm. The pore size was perfect for cellular penetration. Thus, cells showed significant proliferation onto these scaffolds. X-ray studies confirmed the presence of nanohydroxyapatite and graphene oxide (GO). The cell viability was 85%-98% (BS1-BS3), which shows no significant toxicity of the biocomposite. Furthermore, the biocomposites exhibited better antibacterial activity, no effect on the blood clotting (normal in vitro blood clotting), and less than 5% hemolysis. The ultimate compression strength for the biocomposites increased from 4.05 to 7.94 with an increase in the GO content. These exciting results revealed that this material has the potential for possible application in bone tissue engineering.
    Matched MeSH terms: Blood Coagulation/drug effects
  7. Nandini C, Madhunapantula SV, Bovilla VR, Ali M, Mruthunjaya K, Santhepete MN, et al.
    J Ethnopharmacol, 2021 Jul 15;275:114074.
    PMID: 33831466 DOI: 10.1016/j.jep.2021.114074
    ETHNOPHARMACOLOGICAL RELEVANCE: Carica papaya leaf juice/decoction has been in use in folk medicine in Srilanka, Malaysia and in few parts of India for enhancing the platelet counts in dengue. In Siddha medicine, a traditional form of medicine in India, papaya leaf juice has been used for increasing the platelet counts. Papaya leaf has been reported to enhance blood volume in ancient Ayurveda books in India. Carica papaya leaf is well known for its platelet enhancement activity. Although many preclinical and clinical studies have demonstrated the ability of papaya leaf juice for platelet enhancement, but the underlying mechanisms are still unclear.

    AIM OF THE STUDY: The study is aimed at identifying the key ingredients of papaya leaf extract and elucidate the mechanism (s) of action of the identified potent component in mitigating thrombocytopenia (Thp).

    MATERIALS AND METHODS: C. papaya leaf juice was subjected for sequential fractionation to identify the anti-thrombocytopenic phytochemicals. In vivo, stable thrombocytopenia was induced by subcutaneous injection of 70 mg/kg cyclophosphamide (Cyp). After induction, rats were treated with 200 and 400 mg/kg body weight papaya leaf juice and with identified fractions for 14 days. Serum thrombopoietin level was estimated using ELISA. CD110/cMpl, a receptor for thrombopoietin on platelets was measured by western blotting.

    RESULTS: Administration of cyclophosphamide for 6 days induced thrombocytopenia (210.4 ± 14.2 × 103 cells/μL) in rats. Treating thrombocytopenic rats with papaya leaf juice and butanol fraction for 14 days significantly increased the platelet count to 1073.50 ± 29.6 and 1189.80 ± 36.5 × 103 cells/μL, respectively. C.papaya extracts normalized the elevated bleeding and clotting time and decreased oxidative markers by increasing endogenous antioxidants. A marginal increase in the serum thrombopoietin (TPO) level was observed in Cyp treated group compared to normal and treatment groups. Low expression of CD110/cMpl receptor found in Cyp treated group was enhanced by C. papaya extracts (CPJ) and CPJ-BT. Furthermore, examination of the morphology of bone marrow megakaryocytes, histopathology of liver and kidneys revealed the ability of CPJ and fractions in mitigating Cyp-induced thrombocytopenia in rats.

    CONCLUSION: C. papaya leaf juice enhances the platelet count in chemotherapy-induced thrombocytopenia by increasing the expression of CD110 receptor on the megakaryocytes. Hence, activating CD110 receptor might be a viable strategy to increase the platelet production in individuals suffering from thrombocytopenia.

    Matched MeSH terms: Blood Coagulation/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links