Displaying publications 21 - 23 of 23 in total

Abstract:
Sort:
  1. Zzaman W, Bhat R, Yang TA, Easa AM
    J Sci Food Agric, 2017 Oct;97(13):4429-4437.
    PMID: 28251656 DOI: 10.1002/jsfa.8302
    BACKGROUND: Roasting is one of the important unit operations in the cocoa-based industries in order to develop unique flavour in products. Cocoa beans were subjected to roasting at different temperatures and times using superheated steam. The influence of roasting temperature (150-250°C) and time (10-50 min) on sugars, free amino acids and volatile flavouring compounds were investigated.

    RESULTS: The concentration of total reducing sugars was reduced by up to 64.61, 77.22 and 82.52% with increased roasting temperature at 150, 200 and 250°C for 50 min, respectively. The hydrophobic amino acids were reduced up to 29.21, 36.41 and 48.87% with increased roasting temperature at 150, 200 and 250°C for 50 min, respectively. A number of pyrazines, esters, aldehydes, alcohols, ketones, carboxyl acids and hydrocarbons were detected in all the samples at different concentration range. Formation of the most flavour active compounds, pyrazines, were the highest concentration (2.96 mg kg-1 ) at 200°C for 10 min.

    CONCLUSION: The superheated steam roasting method achieves the optimum roasting condition within a short duration Therefore, the quality of cocoa beans can be improved using superheated steam during the roasting process. © 2017 Society of Chemical Industry.

    Matched MeSH terms: Cacao/chemistry*
  2. Baharum Z, Akim AM, Taufiq-Yap YH, Hamid RA, Kasran R
    Molecules, 2014 Nov 10;19(11):18317-31.
    PMID: 25389662 DOI: 10.3390/molecules191118317
    The aims of this study were to determine the antioxidant and antiproliferative activity of the following Theobroma cacao plant part methanolic extracts: leaf, bark, husk, fermented and unfermented shell, pith, root, and cherelle. Antioxidant activity was determined using 2,2-diphenyl-2-picrylhydrazyl (DPPH), thiobarbituric acid-reactive substances (TBARS), and Folin-Ciocalteu assays; the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT) assay was used to determine antiproliferative activity. The root extract had the highest antioxidant activity; its median effective dose (EC50) was 358.3±7.0 µg/mL and total phenolic content was 22.0±1.1 g GAE/100 g extract as compared to the other methanolic plant part extracts. Only the cherelle extract demonstrated 10.4%±1.1% inhibition activity in the lipid peroxidation assay. The MTT assay revealed that the leaf extract had the highest antiproliferative activity against MCF-7 cells [median inhibitory concentration (IC50)=41.4±3.3 µg/mL]. Given the overall high IC50 for the normal liver cell line WRL-68, this study indicates that T. cacao methanolic extracts have a cytotoxic effect in cancer cells, but not in normal cells. Planned future investigations will involve the purification, identification, determination of the mechanisms of action, and molecular assay of T. cacao plant extracts.
    Matched MeSH terms: Cacao/chemistry*
  3. Meng CC, Jalil AM, Ismail A
    Molecules, 2009;14(1):200-9.
    PMID: 19127248 DOI: 10.3390/molecules14010200
    Chocolate contains a wide range of antioxidants that includes soluble phenolic compounds (phenolic acids, catechin, epicatechin, and proanthocyanidins), insoluble polymeric phenolics and methylxanthines. The objective of this study was to determine phenolic and theobromine contents in dark (DC), milk (MC), and white (WC) chocolates commonly found in the Malaysian marketplace. Total phenolic and flavonoids were determined by means of a spectrometric assay, while catechin, epicatechin and theobromine were quantified using a reverse-phase HPLC method. Dark chocolates exhibited the highest phenolics and flavonoids contents, followed by milk and white chocolates. Catechin and epicatechin were major flavonoids detected in dark chocolates. Theobromine was detected in dark and milk chocolates, but not in white chocolates. A high correlation (r= 0.93) between total phenolic and flavonoid contents, indicating that the major phenolic compounds in dark chocolates belong to the flavonoid class. When nutrition and health promotion are of concern, dark chocolates would be recommended over milk and white chocolates owing to their higher contents of antioxidant phenolic compounds.
    Matched MeSH terms: Cacao/chemistry*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links