Displaying publications 21 - 26 of 26 in total

Abstract:
Sort:
  1. Salman AA, Tabandeh M, Heidelberg T, Hussen RS, Ali HM
    Carbohydr Res, 2015 Aug 14;412:28-33.
    PMID: 26000863 DOI: 10.1016/j.carres.2015.04.022
    A series of surfactants combining carbohydrate and imidazolium head groups were prepared and investigated on their assembly behavior. The presence of the imidazolium group dominated the interactions of the surfactants, leading to high CMCs and large molecular surface areas, reflected in curved rather than lamellar surfactant assemblies. The carbohydrate, on the other hand, stabilized molecular assemblies slightly and reduced the surface tension of surfactant solutions considerably. A comparative emulsion study discourages the use of pure alkyl imidazolium glycosides owing to reduced assembly stabilities compared with APGs. However, the surfactants are believed to have potential as component in carbohydrate based surfactant mixtures.
    Matched MeSH terms: Cations/chemistry
  2. Sim YL, Ariffin A, Khan MN
    J Org Chem, 2007 Oct 26;72(22):8452-8.
    PMID: 17918997
    A kinetic study on the aqueous cleavage of N-(2-methoxyphenyl)phthalimide (1) and N-(2-hydroxyphenyl)phthalimide (2), under the buffers of N-methylmorpholine, reveals the equilibrium presence of monocationic amide (Ctam) formed due to nucleophilic reactions of N-methylmorpholine with 1 and 2. Pseudo-first-order rate constants for the reactions of water and HO- with Ctam (formed through nucleophilic reaction of N-methylmorpholine with 1) are 4.60 x 10(-5) s-1 and 47.9 M-1 s-1, respectively. But the cleavage of Ctam, formed through nucleophilic reaction of N-methylmorpholine with 2, involves intramolecular general base (2'-O- group of Ctam)-assisted water attack at carbonyl carbon of cationic amide group of Ctam in or before the rate-determining step.
    Matched MeSH terms: Cations/chemistry
  3. Setifi Z, Lehchili F, Setifi F, Beghidja A, Ng SW, Glidewell C
    Acta Crystallogr C Struct Chem, 2014 Mar;70(Pt 3):338-41.
    PMID: 24594730 DOI: 10.1107/S2053229614004379
    In the title salt, C14H18N2(2+) · 2C9H5N4O(-), the 1,1'-diethyl-4,4'-bipyridine-1,1'-diium dication lies across a centre of inversion in the space group P21/c. In the 1,1,3,3-tetracyano-2-ethoxypropenide anion, the two independent -C(CN)2 units are rotated, in conrotatory fashion, out of the plane of the central propenide unit, making dihedral angles with the central unit of 16.0(2) and 23.0(2)°. The ionic components are linked by C-H...N hydrogen bonds to form a complex sheet structure, within which each cation acts as a sixfold donor of hydrogen bonds and each anion acts as a threefold acceptor of hydrogen bonds.
    Matched MeSH terms: Cations/chemistry*
  4. Kraevsky SV, Barinov NA, Morozova OV, Palyulin VV, Kremleva AV, Klinov DV
    Int J Mol Sci, 2023 Jun 06;24(12).
    PMID: 37372975 DOI: 10.3390/ijms24129827
    In the present work, complexes of DNA with nano-clay montmorillonite (Mt) were investigated by means of atomic force microscopy (AFM) under various conditions. In contrast to the integral methods of analysis of the sorption of DNA on clay, AFM allowed us to study this process at the molecular level in detail. DNA molecules in the deionized water were shown to form a 2D fiber network weakly bound to both Mt and mica. The binding sites are mostly along Mt edges. The addition of Mg2+ cations led to the separation of DNA fibers into separate molecules, which bound mainly to the edge joints of the Mt particles according to our reactivity estimations. After the incubation of DNA with Mg2+, the DNA fibers were capable of wrapping around the Mt particles and were weakly bound to the Mt edge surfaces. The reversible sorption of nucleic acids onto the Mt surface allows it to be used for both RNA and DNA isolation for further reverse transcription and polymerase chain reaction (PCR). Our results show that the strongest binding sites for DNA are the edge joints of Mt particles.
    Matched MeSH terms: Cations/chemistry
  5. Hong FJ, Low YY, Chong KW, Thomas NF, Kam TS
    J Org Chem, 2014 May 16;79(10):4528-43.
    PMID: 24754525 DOI: 10.1021/jo500559r
    A systematic study of the electrochemical oxidation of 1,2-diarylalkenes was carried out with the focus on detailed product studies and variation of product type as a function of aromatic substitution. A reinvestigation of the electrochemical oxidation of 4,4'-dimethoxystilbene under various conditions was first carried out, and all products formed were fully characterized and quantitated. This was followed by a systematic investigation of the effect of aromatic substitution on the nature and distribution of the products. The aromatic substituents were found to fall into three main categories, viz., substrates in which the nature and position of the aromatic substituents gave rise to essentially the same products as 4,4'-dimethoxystilbene, for example, tetraaryltetrahydrofurans, dehydrotetralins, and aldehydes (p-MeO or p-NMe2 on one ring and X on the other ring, where X = o-MeO or p-alkyl, or m- or p-EWG; e.g., 4-methoxy-4'-trifluoromethylstilbene); those that gave rise to a mixture of indanyl (or tetralinyl) acetamides and dehydrotetralins (or pallidols) (both or one ring substituted by alkyl groups, e.g., 4,4'-dimethylstilbene); and those where strategic placement of donor groups, such as OMe and OH, led to the formation of ampelopsin F and pallidol-type carbon skeletons (e.g., 4,3',4'-trimethoxystilbene). Reaction pathways to rationalize the formation of the different products are presented.
    Matched MeSH terms: Cations/chemistry*
  6. Chatterjee S, Mahmood S, Hilles AR, Thomas S, Roy S, Provaznik V, et al.
    Int J Biol Macromol, 2023 Sep 01;248:125757.
    PMID: 37429342 DOI: 10.1016/j.ijbiomac.2023.125757
    Research and development in health care industry is in persistence progression. To make it more patient-friendly or to get maximum benefits from it, special attention to different advanced drug delivery system (ADDS) is employed that delivers the drug at the target site and will be able to sustain/control release of drugs. ADDS should be non-toxic, biodegradable, biocompatible along with desirable showing physicochemical and functional properties. These drug delivery systems can be totally based on polymers, either with natural or synthetic polymers. The molecular weight of polymer can be tuned and different groups of polymers can be modified or substituted with other functional groups. Degree of substitution is also tailored. Cationic starch in recent years is exploited in drug delivery, tissue engineering and biomedicine. Due to their abundant availability, low cost, easy chemical modification, low toxicity, biodegradability and biocompatibility, extensive research is now being carried out. Our present discussion will shed light on the usage of cationic starch in health care system.
    Matched MeSH terms: Cations/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links