Displaying publications 21 - 35 of 35 in total

Abstract:
Sort:
  1. Pham TH, Rahaman NYA, Lila MAM, Lai HLT, Nguyen LT, Van Nguyen G, et al.
    BMC Vet Res, 2021 Mar 08;17(1):115.
    PMID: 33685458 DOI: 10.1186/s12917-021-02777-1
    BACKGROUND: After a decade of silence, an outbreak of the contagious and Asian endemic disease, goat pox re-emerged in North Vietnam affecting more than 1800 heads with a mortality rate of 6.5%. The inevitable impact of goat pox on hide quality, breeding, chevon and milk production has resulted in a significant economic losses to the developing goat industry of Vietnam. In the act of establishing an effective control of this devastating disease, tracing the source of re-emergence via a phylogenetic study was carried out to reveal their genetic relatedness. Either skin scab or papule from the six affected provinces were collected, cultured into Vero cells followed by restricted enzyme digestion of targeted P32 gene DNA encoding. The P32 gene was then cloned and transformed into E.coli competent cells for further sequencing.

    RESULTS: The isolated sequence is deposited into GenBank under Accession No. MN317561/VNUAGTP1. The phylogenetic tree revealed high similarity of nucleotide and amino acid sequences to references goat pox strains accounting for 99.6 and 99.3, respectively. The Vietnamese strain is clustered together with currently circulating goat pox virus in China, India and Pakistan which suggested the origin of South China.

    CONCLUSIONS: This Vietnam isolate is clustered together with other Asian goat pox strains indicating the dissemination of a common goat pox virus within this continent.

    Matched MeSH terms: Disease Outbreaks/veterinary
  2. Alexander DJ
    Avian Dis, 2007 Mar;51(1 Suppl):161-6.
    PMID: 17494548
    Between December 2003 and January 2004 highly pathogenic avian influenza (HPAI) H5N1 infections of poultry were declared in China, Japan, South Korea, Laos, Thailand, Cambodia, Vietnam, and Indonesia. In 2004 an outbreak was reported in Malaysia. In 2005 H5N1 outbreaks were recorded in poultry in Russia, Kazakhstan, Mongolia, Romania, Turkey, and Ukraine, and virus was isolated from swans in Croatia. In 2004 HPAI H5N1 virus was isolated from smuggled eagles detected at the Brussels Airport and in 2005 imported caged birds held in quarantine in England. In 2006 HPAI was reported in poultry in Iraq, India, Azerbaijan, Pakistan, Myanmar, Afghanistan, and Israel in Asia; Albania, France, and Sweden in Europe; and Nigeria, Cameroon, and Niger in Africa; as well as in wild birds in some 24 countries across Asia and Europe. In 2003, over 25,000,000 birds were slaughtered because of 241 outbreaks of HPAI caused by virus of H7N7 subtype in the Netherlands. The virus spread into Belgium (eight outbreaks) and Germany (one outbreak). HPAI H5N2 virus was responsible for outbreaks in ostriches in South Africa during 2005. HPAI H7N3 virus was isolated in Pakistan in 2004. Low-pathogenicity avian influenza (LPAI) H5 or H7 viruses were isolated from poultry in Italy (H7N3 2002-2003; H5N2 2005), The Netherlands (H7N3 2002), France (H5N2 2003), Denmark (H5N7 2003), Taiwan (H5N2 2004), and Japan (H5N2 2005). Many isolations of LPAI viruses of other subtypes were reported from domestic and wild birds. Infections with H9N2 subtype viruses have been widespread across Asia during 2002-06.
    Matched MeSH terms: Disease Outbreaks/veterinary
  3. Sosa Portugal S, Cortey M, Tello M, Casanovas C, Mesonero-Escuredo S, Barrabés S, et al.
    Transbound Emerg Dis, 2021 Mar;68(2):519-530.
    PMID: 32619306 DOI: 10.1111/tbed.13709
    The present study was aimed to assess the diversity of influenza A viruses (IAV) circulating in pig farms in the Iberian Peninsula. The study included two different situations: farms suffering respiratory disease outbreaks compatible with IAV (n = 211) and randomly selected farms without overt respiratory disease (n = 19). Initially, the presence of IAV and lineage determination was assessed by qRT-PCR using nasal swabs. IAV was confirmed in 145 outbreaks (68.7%), mostly in nurseries (53/145; 36.5%). Subtyping by RT-qPCR was possible in 94 of those cases being H1avN2hu (33.6%), H1avN1av (24.3%) and H1huN2hu (18.7%), the most common lineages. H3huN2hu and H1pdmN1pdm represented 7.5% and 6.5% of the cases, respectively. As for the randomly selected farms, 15/19 (78.9%) were positive for IAV. Again, the virus was mostly found in nurseries and H1avN2hu was the predominant lineage. Virus isolation in MDCK cells was attempted from positive cases. Sixty of the isolates were fully sequenced with Illumina MiSeq®. Within those 60 isolates, the most frequent genotypes had internal genes of avian origin, and these were D (19/60; 31.7%) and A (11/60; 18.3%), H1avN2hu and H1avN1av, respectively. In addition, seven previously unreported genotypes were identified. In two samples, more than one H or N were found and it was not possible to precisely establish their genotypes. A great diversity was observed in the phylogenetic analysis. Notably, four H3 sequences clustered with human isolates from 2004-05 (Malaysia and Denmark) that were considered uncommon in pigs. Overall, this study indicates that IAV is a very common agent in respiratory disease outbreaks in Spanish pig farms. The genetic diversity of this virus is continuously expanding with clear changes in the predominant subtypes and lineages in relatively short periods of time. The current genotyping scheme has to be enlarged to include the new genotypes that could be found in the future.
    Matched MeSH terms: Disease Outbreaks/veterinary*
  4. Ramanoon SZ, Robertson ID, Edwards J, Hassan L, Isa KM
    Trop Anim Health Prod, 2013 Feb;45(2):373-7.
    PMID: 22826115 DOI: 10.1007/s11250-012-0226-x
    This is a retrospective study of the outbreaks of foot-and-mouth disease (FMD) in Peninsular Malaysia between 2001 and May 2007. In total, 270 outbreaks of FMD were recorded. Serotype O virus (89.95 %) and serotype A (7.7 %) had caused the outbreaks. Significant differences on the occurrence of FMD were found between the years (t = 5.73, P = 0.000, df = 11), months (t = 4.7, P = 0.000, df = 11), monsoon season (t = 2.63, P = 0.025, df = 10) and states (t = 4.84, P = 0.001, df = 10). A peak of outbreaks observed in 2003 could be due to increased animal movement and the other peak in 2006 could be due to a compromised FMD control activities due to activities on the eradication of highly pathogenic avian influenza. Cattle (86 % of outbreaks) suffered the most. However, no difference in disease occurrence between species was observed. The populations of cattle (r = 0.672, P = 0.023) and sheep (r = 0.678, P = 0.022) were significantly correlated with occurrence of FMD. Movement of animals (66 % of outbreaks) was the main source for outbreaks. A combination of control measures were implemented during outbreaks. In conclusion, the findings of this study show that FMD is endemic in Peninsular Malaysia, and information gained could be used to improve the existing control strategy.
    Matched MeSH terms: Disease Outbreaks/veterinary*
  5. Landman WJ, Schrier CC
    Tijdschr Diergeneeskd, 2004 Dec 1;129(23):782-96.
    PMID: 15624878
    Avian influenza viruses are highly infectious micro-organisms that primarily affect birds. Nevertheless, they have also been isolated from a number of mammals, including humans. Avian influenza virus can cause large economic losses to the poultry industry because of its high mortality. Although there are pathogenic variants with a low virulence and which generally cause only mild, if any, clinical symptoms, the subtypes H5 and H7 can mutate from a low to a highly virulent (pathogenic) virus and should be taken into consideration in eradication strategies. The primary source of infection for commercial poultry is direct and indirect contact with wild birds, with waterfowl forming a natural reservoir of the virus. Live-poultry markets, exotic birds, and ostriches also play a significant role in the epidemiology of avian influenza. The secondary transmission (i.e., between poultry farms) of avian influenza virus is attributed primarily to fomites and people. Airborne transmission is also important, and the virus can be spread by aerosol in humans. Diagnostic tests detect viral proteins and genes. Virus-specific antibodies can be traced by serological tests, with virus isolation and identification being complementary procedures. The number of outbreaks of avian influenza seems to be increasing - over the last 5 years outbreaks have been reported in Italy, Hong Kong, Chile, the Netherlands, South Korea, Vietnam, Japan, Thailand, Cambodia, Indonesia, Laos, China, Pakistan, United States of America, Canada, South Africa, and Malaysia. Moreover, a growing number of human cases of avian influenza, in some cases fatal, have paralleled the outbreaks in commercial poultry. There is great concern about the possibility that a new virus subtype with pandemic potential could emerge from these outbreaks. From the perspective of human health, it is essential to eradicate the virus from poultry; however, the large number of small-holdings with poultry, the lack of control experience and resources, and the international scale of transmission and infection make rapid control and long-term prevention of recurrence extremely difficult. In the Western world, the renewed interest in free-range housing carries a threat for future outbreaks. The growing ethical objections to the largescale culling of birds require a different approach to the eradication of avian influenza.
    Matched MeSH terms: Disease Outbreaks/veterinary
  6. Kianizadeh M, Aini I, Omar AR, Yusoff K, Sahrabadi M, Kargar R
    Acta Virol., 2002;46(4):247-51.
    PMID: 12693862
    Nine Newcastle disease virus (NDV) isolates from Newcastle disease (ND) outbreaks in different regions of Iran were characterized at molecular level. Sequence analysis revealed that the isolates shared two pairs of arginine and a phenylalanine at the N-terminus of the fusion (F) protein cleavage site similarly to other velogenic isolates of NDV characterized earlier. Eight of the nine isolates had the same amino acid sequence as VOL95, a Russian NDV isolate from 1995. However, one isolate, MK13 showed 5 amino acid substitutions, of which 3 have been reported for other velogenic NDV isolates. These results suggest that the origin of the outbreaks of ND in different parts of Iran in 1995-1998 is VOL95.
    Matched MeSH terms: Disease Outbreaks/veterinary*
  7. Ozawa Y, Ong BL, An SH
    Rev. - Off. Int. Epizoot., 2001 Aug;20(2):605-13.
    PMID: 11548530
    Traceback systems in most countries of Asia are not well developed, as indicated by responses to a questionnaire by veterinary officials in thirteen countries. Marking of animals for traceback is practised only in a limited number of countries in specific areas or zones and for specific purposes only. In Malaysia, traceback has been undertaken by marking farm code tattoos on pigs. This enables the identification of the farm of origin of pigs found to be infected by Nipah virus in sero-surveillance programmes. The origin of the foot and mouth disease (FMD) virus that surfaced in the Republic of Korea in March 2000 was investigated through several epidemiological studies of suspected sources of contamination such as imported hay, yellow sand, milk collection trucks and feed delivery trucks. None of these studies gave results that indicated the origin of the FMD virus. The origin of the FMD virus that was recorded in Japan in March 2000 was also investigated in epidemiological studies; in this case, imported wheat straw was incriminated as the most likely source of infection. Comparative studies of the pathogenicities of FMD (type O) viruses isolated in Taipei China, the Republic of Korea and Japan, suggest that these viruses might have originated as vaccine strains used in a third country.
    Matched MeSH terms: Disease Outbreaks/veterinary*
  8. Toh X, Soh ML, Ng MK, Yap SC, Harith N, Fernandez CJ, et al.
    Transbound Emerg Dis, 2019 Sep;66(5):1884-1893.
    PMID: 31059176 DOI: 10.1111/tbed.13218
    Equine influenza is a major cause of respiratory infections in horses and can spread rapidly despite the availability of commercial vaccines. In this study, we carried out molecular characterization of Equine Influenza Virus (EIV) isolated from the Malaysian outbreak in 2015 by sequencing of the HA and NA gene segments using Sanger sequencing. The nucleotide and amino acid sequences of HA and NA were compared with representative Florida clade 1 and clade 2 strains using phylogenetic analysis. The Florida clade 1 viruses identified in this outbreak revealed numerous amino acid substitutions in the HA protein as compared to the current OIE vaccine strain recommendations and representative strains of circulating Florida sub-lineage clade 1 and clade 2. Differences in HA included amino acids located within antigenic sites which could lead to reduced immune recognition of the outbreak strain and alter the effectiveness of vaccination against the outbreak strain. Detailed surveillance and genetic information sharing could allow genetic drift of equine influenza viruses to be monitored more effectively on a global basis and aid in refinement of vaccine strain selection for EIV.
    Matched MeSH terms: Disease Outbreaks/veterinary*
  9. Sims LD
    Avian Dis, 2007 Mar;51(1 Suppl):174-81.
    PMID: 17494550
    Numerous lessons have been learned so far in controlling H5N1 avian influenza in Asia. Early detection of incursions of virus prevented establishment of the disease in several countries, notably Japan, South Korea, and Malaysia. In countries where detection of early cases was delayed, infection is endemic and has been for three or more years. Control measures implemented in these countries need to reflect this finding. Vaccination will continue to be one of the key measures used in these endemically infected countries. Used alone, vaccination will not result in elimination of H5N1 viruses from a country, but, if used correctly, it will markedly reduce the prevalence of and susceptibility to infection. Vaccination has already played a valuable role in reducing the adverse effects of H5N1 viruses. Mass culling also reduces the level of infection in infected areas. However, the long-term benefits are limited in endemically infected countries owing to the high probability of reinfection on restocking unless other measures are used in parallel. Full epidemiological studies have not been conducted in many infected countries. Nevertheless, it is recognized that the number of clinical cases does not truly reflect the levels of infection. Domestic ducks and large live poultry markets have played a key role in the persistence of infection, because they can be infected silently. In tackling this disease, countries should adopt integrated control programs using the combination of measures best suited to the local environment. All surveillance data should be shared, both positive and negative, and should include information on cases of infection and disease. Socioeconomic and ecological implications of all control measures should be assessed before implementation, especially the impact on the rural poor.
    Matched MeSH terms: Disease Outbreaks/veterinary*
  10. Hayashi M, Murakami T, Kuroda Y, Takai H, Ide H, Awang A, et al.
    Can. J. Vet. Res., 2016 Jul;80(3):189-96.
    PMID: 27408331
    Rotavirus B (RVB) infection in cattle is poorly understood. The objective of this study was to describe the epidemiological features of repeated outbreaks of epidemic diarrhea due to RVB infection in adult cattle on a large dairy farm complex in Japan. In October 2002, approximately 550 adult cows and approximately 450 in February 2005 had acute watery diarrhea at several farms on the complex. Four months before the first outbreak, RVB antibody-positive rates at subsequently affected farms were significantly lower than at non-affected farms (30% to 32% versus 61% to 67%). During the acute phase of both outbreaks, RVB antibody-positive rates in diarrheal cows tested were as low as 15% to 26%. Most of the farms affected in the second outbreak were also involved in the first outbreak. Some adult cows with RVB diarrhea in the first outbreak showed not only RVB seroresponse, but also RVB shedding in the second outbreak, although none of these cows developed diarrhea. Nucleotide sequences of the VP7 and VP4 genes revealed a close relationship between RVB strains in both outbreaks. Taken together, these results indicate that outbreaks of epidemic RVB diarrhea in adult cows might be influenced by herd immunity and could occur repeatedly at the same farms over several years. To our knowledge, this is the first report on repeated RVB infections in the same cattle.
    Matched MeSH terms: Disease Outbreaks/veterinary*
  11. Abolnik C, Mubamba C, Wandrag DBR, Horner R, Gummow B, Dautu G, et al.
    Transbound Emerg Dis, 2018 Apr;65(2):e393-e403.
    PMID: 29178267 DOI: 10.1111/tbed.12771
    It is widely accepted that Newcastle disease is endemic in most African countries, but little attention has been afforded to establishing the sources and frequency of the introductions of exotic strains. Newcastle disease outbreaks have a high cost in Africa, particularly on rural livelihoods. Genotype VIIh emerged in South-East Asia and has since caused serious outbreaks in poultry in Malaysia, Indonesia, southern China, Vietnam and Cambodia. Genotype VIIh reached the African continent in 2011, with the first outbreaks reported in Mozambique. Here, we used a combination of phylogenetic evidence, molecular dating and epidemiological reports to trace the origins and spread of subgenotype VIIh Newcastle disease in southern Africa. We determined that the infection spread northwards through Mozambique, and then into the poultry of the north-eastern provinces of Zimbabwe. From Mozambique, it also reached neighbouring Malawi and Zambia. In Zimbabwe, the disease spread southward towards South Africa and Botswana, causing outbreaks in backyard chickens in early-to-mid 2013. In August 2013, the disease entered South Africa's large commercial industry, and the entire country was infected within a year, likely through fomites and the movements of cull chickens. Illegal poultry trading or infected waste from ships and not wild migratory birds was the likely source of the introduction to Mozambique in 2011.
    Matched MeSH terms: Disease Outbreaks/veterinary*
  12. Homonnay ZG, Kovács EW, Bányai K, Albert M, Fehér E, Mató T, et al.
    Avian Pathol, 2014;43(6):552-60.
    PMID: 25299764 DOI: 10.1080/03079457.2014.973832
    A neurological disease of young Pekin ducks characterized by ataxia, lameness, and paralysis was observed at several duck farms in Malaysia in 2012. Gross pathological lesions were absent or inconsistent in most of the cases, but severe and consistent microscopic lesions were found in the brain and spinal cord, characterized by non-purulent panencephalomyelitis. Several virus isolates were obtained in embryonated duck eggs and in cell cultures (Vero and DF-1) inoculated with the brain homogenates of affected ducks. After exclusion of other viruses, the isolates were identified as a flavivirus by flavivirus-specific reverse transcription-polymerase chain reaction (RT-PCR) assays. Inoculation of 2-week-old Pekin ducks with a flavivirus isolate by the subcutaneous or intramuscular route resulted in typical clinical signs and histological lesions in the brain and spinal cord. The inoculated virus was detected by RT-PCR from organ samples of ducks with clinical signs and histological lesions. With a few days delay, the disease was also observed among co-mingled contact control birds. Phylogenetic analysis of NS5 and E gene sequences proved that the isolates were representatives of a novel phylogenetic group within clade XI (Ntaya virus group) of the Flavivirus genus. This Malaysian Duck Tembusu Virus (DTMUV), named Perak virus, has moderate genomic RNA sequence similarity to a related DTMUV identified in China. In our experiment the Malaysian strain of DTMUV could be transmitted in the absence of mosquito vectors. These findings may have implications for the control and prevention of this emerging group of flaviviruses.
    Matched MeSH terms: Disease Outbreaks/veterinary*
  13. Tan DY, Hair-Bejo M, Omar AR, Aini I
    Avian Dis, 2004 Apr-Jun;48(2):410-6.
    PMID: 15283430
    The characteristics of the pathogenic infectious bursal disease virus (IBDV) that infected avian species other than commercial chickens were largely unknown. In this study, by using in vivo and molecular methods, we had characterized an IBDV isolate (named 94268) isolated from an infectious bursal disease (IBD) outbreak in Malaysian village chickens--the adulterated descendant of the Southeast Asian jungle fowl (Gallus bankiva) that were commonly reared in the backyard. The 94268 isolate was grouped as the very virulent IBDV (vvIBDV) strain because it caused severe lesions and a high mortality rate in village chickens (>88%) and experimentally infected specific-pathogen-free chickens (>66%). In addition, it possessed all of the vvIBDV molecular markers in its VP2 gene. Phylogenetic analysis using distance, maximum parsimony, and maximum likelihood methods revealed that 94268 was monophyletic with other vvIBDV isolates and closely related to the Malaysian vvIBDV isolates. Given that the VP2 gene of 94268 isolate was almost identical and evolutionarily closely related to other field IBDV isolates that affected the commercial chickens, we therefore concluded that IBD infections had spread across the farm boundary. IBD infection in the village chicken may represent an important part of the IBD epidemiology because these birds could harbor the vvIBDV strain and should not be overlooked in the control and prevention of the disease.
    Matched MeSH terms: Disease Outbreaks/veterinary*
  14. Yang CY, Chang PC, Hwang JM, Shieh HK
    Avian Dis, 1997 Apr-Jun;41(2):365-73.
    PMID: 9201401
    Portions of the hemagglutinin neuraminidase (HN) gene of Newcastle disease virus (NDV) isolates from two recent outbreaks were sequenced to investigate epidemiology of this disease in Taiwan. These NDV isolates were all viscerotropic velogenic according to the clinical lesions produced in chickens. Sequence data were obtained from 14 NDV isolates (12 from 1995 and 2 from 1984). All isolates differed in their nucleotide sequences (from 0.3 to 15.3%), and represented potentially different strains of NDV. Phylogenetic analysis revealed that these isolates are closely related to viruses isolated from Japan and Malaysia. Some viruses isolated in 1995 appeared to evolve from viruses isolated in 1984. The results suggest that the 1995 outbreak of Newcastle disease (ND) in Taiwan may have been caused by multiple strains of velogenic NDV that have cocirculated in Taiwan for some time. Moreover, NDV isolates from racing pigeons were very similar to isolates from chickens in the same period, suggesting that both domestic and free-living birds were involved in the spread of ND in Taiwan.
    Matched MeSH terms: Disease Outbreaks/veterinary*
  15. Bala JA, Balakrishnan KN, Abdullah AA, Mohamed R, Haron AW, Jesse FFA, et al.
    Microb Pathog, 2018 Jul;120:55-63.
    PMID: 29709684 DOI: 10.1016/j.micpath.2018.04.057
    Orf disease is known to be enzootic among small ruminants in Asia, Africa, and some other parts of the world. The disease caused by orf virus is highly contagious among small ruminant species. Unfortunately, it has been neglected for decades because of the general belief that it only causes a self-limiting disease. On the other hand, in the past it has been reported to cause huge cumulative financial losses in livestock farming. Orf disease is characterized by localized proliferative and persistent skin nodule lesions that can be classified into three forms: generalized, labial and mammary or genitals. It can manifest as benign or malignant types. The later type of orf can remain persistent, often fatal and usually causes a serious outbreak among small ruminant population. Morbidity and mortality rates of orf are higher especially in newly infected kids and lambs. Application of antibiotics together with antipyretic and/or analgesic is highly recommended as a supportive disease management strategy for prevention of subsequent secondary microbial invasion. The presence of various exotic orf virus strains of different origin has been reported in many countries mostly due to poorly controlled cross-border virus transmission. There have been several efforts to develop orf virus vaccines and it was with variable success. The use of conventional vaccines to control orf is a debatable topic due to the concern of short term immunity development. Following re-infection in previously vaccinated animals, it is uncommon to observe the farms involved to experience rapid virus spread and disease outbreak. Meanwhile, cases of zoonosis from infected animals to animal handler are not uncommon. Despite failures to contain the spread of orf virus by the use of conventional vaccines, vaccination of animals with live orf virus is still considered as one of the best choice. The review herein described pertinent issues with regard to the development and use of potential effective vaccines as a control measure against orf virus infection.
    Matched MeSH terms: Disease Outbreaks/veterinary
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links