Displaying publications 21 - 40 of 381 in total

Abstract:
Sort:
  1. Adie H, Lawes MJ
    Biol Rev Camb Philos Soc, 2023 Apr;98(2):643-661.
    PMID: 36444419 DOI: 10.1111/brv.12923
    Tree species of Eurasian broadleaved forest possess two divergent trait syndromes with contrasting patterns of resource allocation adapted to different selection environments: short-stature basal resprouters that divert resources to a bud bank adapted to frequent and severe disturbances such as fire and herbivory, and tall trees that delay reproduction by investing in rapid height growth to escape shading. Drawing on theory developed in savanna ecosystems, we propose a conceptual framework showing that the possession of contrasting trait syndromes is essential for the persistence of broadleaved trees in an open ecosystem that burns. Consistent with this hypothesis, trees of modern Eurasian broadleaved forest bear a suite of traits that are adaptive to surface and crown-fire regimes. We contend that limited opportunities in grassland restricts recruitment to disturbance-free refugia, and en masse establishment creates a wooded environment where shade limits the growth of light-demanding savanna plants. Rapid height growth, which involves investment in structural support and the switch from a multi-stemmed to a monopodial growth form, is adaptive in this shaded environment. Although clustering reduces surface fuel loads, these establishment nuclei are vulnerable to high-intensity crown fires. The lethal effects of canopy fire are avoided by seasonal leaf shedding, and aerial resprouting enhances rapid post-fire recovery of photosynthetic capacity. While these woody formations satisfy the structural definition of forest, their constituents are clearly derived from savanna. Contrasting trait syndromes thus represent the shift from consumer to resource regulation in savanna ecosystems. Consistent with global trends, the diversification of most contemporary broadleaved taxa coincided with the spread of grasslands, a surge in fire activity and a decline in wooded ecosystems in the late Miocene-Pliocene. Recognition that Eurasian broadleaved forest has savanna origins and persists as an alternative state with adjacent grassy ecosystems has far-reaching management implications in accordance with functional rather than structural criteria. Shade is a severe constraint to the regeneration and growth of both woody and herbaceous growth forms in consumer-regulated ecosystems. However, these ecosystems are highly resilient to disturbance, an essential process that maintains diversity especially among the species-rich herbaceous component that is vulnerable to shading when consumer behaviour is altered.
    Matched MeSH terms: Forests*
  2. Moore JH, Gibson L, Amir Z, Chanthorn W, Ahmad AH, Jansen PA, et al.
    Biol Rev Camb Philos Soc, 2023 Oct;98(5):1829-1844.
    PMID: 37311559 DOI: 10.1111/brv.12985
    In many disturbed terrestrial landscapes, a subset of native generalist vertebrates thrives. The population trends of these disturbance-tolerant species may be driven by multiple factors, including habitat preferences, foraging opportunities (including crop raiding or human refuse), lower mortality when their predators are persecuted (the 'human shield' effect) and reduced competition due to declines of disturbance-sensitive species. A pronounced elevation in the abundance of disturbance-tolerant wildlife can drive numerous cascading impacts on food webs, biodiversity, vegetation structure and people in coupled human-natural systems. There is also concern for increased risk of zoonotic disease transfer to humans and domestic animals from wildlife species with high pathogen loads as their abundance and proximity to humans increases. Here we use field data from 58 landscapes to document a supra-regional phenomenon of the hyperabundance and community dominance of Southeast Asian wild pigs and macaques. These two groups were chosen as prime candidates capable of reaching hyperabundance as they are edge adapted, with gregarious social structure, omnivorous diets, rapid reproduction and high tolerance to human proximity. Compared to intact interior forests, population densities in degraded forests were 148% and 87% higher for wild boar and macaques, respectively. In landscapes with >60% oil palm coverage, wild boar and pig-tailed macaque estimated abundances were 337% and 447% higher than landscapes with <1% oil palm coverage, respectively, suggesting marked demographic benefits accrued by crop raiding on calorie-rich food subsidies. There was extreme community dominance in forest landscapes with >20% oil palm cover where two pig and two macaque species accounted for >80% of independent camera trap detections, leaving <20% for the other 85 mammal species >1 kg considered. Establishing the population trends of pigs and macaques is imperative since they are linked to cascading impacts on the fauna and flora of local forest ecosystems, disease and human health, and economics (i.e., crop losses). The severity of potential negative cascading effects may motivate control efforts to achieve ecosystem integrity, human health and conservation objectives. Our review concludes that the rise of native generalists can be mediated by specific types of degradation, which influences the ecology and conservation of natural areas, creating both positive and detrimental impacts on intact ecosystems and human society.
    Matched MeSH terms: Forests
  3. Boakes EH, Fuller RA, McGowan PJ, Mace GM
    Biol Lett, 2016 Mar;12(3).
    PMID: 26961894 DOI: 10.1098/rsbl.2015.0824
    Identifying local extinctions is integral to estimating species richness and geographic range changes and informing extinction risk assessments. However, the species occurrence records underpinning these estimates are frequently compromised by a lack of recorded species absences making it impossible to distinguish between local extinction and lack of survey effort-for a rigorously compiled database of European and Asian Galliformes, approximately 40% of half-degree cells contain records from before but not after 1980. We investigate the distribution of these cells, finding differences between the Palaearctic (forests, low mean human influence index (HII), outside protected areas (PAs)) and Indo-Malaya (grassland, high mean HII, outside PAs). Such cells also occur more in less peaceful countries. We show that different interpretations of these cells can lead to large over/under-estimations of species richness and extent of occurrences, potentially misleading prioritization and extinction risk assessment schemes. To avoid mistakes, local extinctions inferred from sightings records need to account for the history of survey effort in a locality.
    Matched MeSH terms: Forests
  4. Rajpar MN, Rajpar AH, Zakaria M
    Braz J Biol, 2022;84:e256160.
    PMID: 35137773 DOI: 10.1590/1519-6984.256160
    Riverine forests are unique and highly significant ecosystems that are globally important for diverse and threatened avian species. Apart from being a cradle of life, it also serves as a gene pool that harbors a variety of flora and fauna species (repeated below). Despite the fact, this fragile ecosystem harbored avian assemblages; it is now disappearing daily as a result of human activity. Determining habitat productivity using bird species is critical for conservation and better management in the future. Multiple surveys were conducted over a 15-month period, from January to March 2019, using the distance sampling point count method. A total of 250 point count stations were fixed systematically at 300 m intervals. In total, 9929 bird individuals were recorded, representing 57 species and 34 families. Out of 57 bird species, two were vulnerable, one was data deficient, one was nearly threatened, and the remaining 53 species were of least concern. The Eurasian Collard Dove - Streptopelia decaocto (14.641 ± 2.532/ha), White-eared Bulbul - Pycnonotus leucotis (13.398 ± 4.342/ha) and Common Babbler - Turdoides caudata (10.244 ± 2.345/ha) were the three first plenteous species having higher densities. However, the densities of three species, i.e., Lesser Whitethroat - Sylvia curruca, Gray Heron - Ardea cinerea and Pallas Fish Eagle - Haliaeetus leucoryphus, were not analyzed due to the small sample size. The findings of diversity indices revealed that riverine forest has harbored the diverse avian species that are uniformly dispersed across the forest. Moreover, recording the ten foraging guilds indicated that riverine forest is rich in food resources. In addition, the floristic structure importance value index results indicated that riverine forest is diverse and rich in flora, i.e. trees, shrubs, weeds and grass, making it an attractive and productive habitat for bird species.
    Matched MeSH terms: Forests*
  5. Norlia B., Norwati M., Norwati A., Mohd Rosli H., Norihan M. S.
    MyJurnal
    This study was part of the larger studies to isolate and characterize gene related to flowering in teak. This study isolated differentially expressed genes of teak flowering tissues. One of the genes encodes plant protein kinases highly homologous to the AtSK-II of Arabidopsis GSK3/SHAGGY subfamily. The gene was named as Tectona grandis SHAGGY kinase (Tg-SK). The protein sequence of this gene contained the characteristic catalytic domain of GSK-3/SHAGGY protein kinase. The gene also shows the same genomic organization of 11 introns and 12 exons. Although the size of the introns varies, the positions of exon/intron boundaries are very similar to AtSK-II. The discovery of this gene in teak, which is a forest tree species, supports the hypothesis, which suggested the gene is found in all eukaryotes.
    Matched MeSH terms: Forests
  6. Brandon-Mong GJ, Littlefair JE, Sing KW, Lee YP, Gan HM, Clare EL, et al.
    Bull. Entomol. Res., 2018 Dec;108(6):792-799.
    PMID: 29441836 DOI: 10.1017/S000748531800010X
    Arthropod communities in the tropics are increasingly impacted by rapid changes in land use. Because species showing distinct seasonal patterns of activity are thought to be at higher risk of climate-related extirpation, global warming is generally considered a lower threat to arthropod biodiversity in the tropics than in temperate regions. To examine changes associated with land use and weather variables in tropical arthropod communities, we deployed Malaise traps at three major anthropogenic forests (secondary reserve forest, oil palm forest, and urban ornamental forest (UOF)) in Peninsular Malaysia and collected arthropods continuously for 12 months. We used metabarcoding protocols to characterize the diversity within weekly samples. We found that changes in the composition of arthropod communities were significantly associated with maximum temperature in all the three forests, but shifts were reversed in the UOF compared with the other forests. This suggests arthropods in forests in Peninsular Malaysia face a double threat: community shifts and biodiversity loss due to exploitation and disturbance of forests which consequently put species at further risk related to global warming. We highlight the positive feedback mechanism of land use and temperature, which pose threats to the arthropod communities and further implicates ecosystem functioning and human well-being. Consequently, conservation and mitigation plans are urgently needed.
    Matched MeSH terms: Forests*
  7. Yule CM, Lim YY, Lim TY
    Carbon Balance Manag, 2018 Feb 07;13(1):3.
    PMID: 29417248 DOI: 10.1186/s13021-018-0092-6
    BACKGROUND: Tropical peat swamp forests (TPSF) are globally significant carbon stores, sequestering carbon mainly as phenolic polymers and phenolic compounds (particularly as lignin and its derivatives) in peat layers, in plants, and in the acidic blackwaters. Previous studies show that TPSF plants have particularly high levels of phenolic compounds which inhibit the decomposition of organic matter and thus promote peat accumulation. The studies of phenolic compounds are thus crucial to further understand how TPSF function with respect to carbon sequestration. Here we present a study of cycling of phenolic compounds in five forests in Borneo differing in flooding and acidity, leaching of phenolic compounds from senescent Macaranga pruinosa leaves, and absorption of phenolics by M. pruinosa seedlings.

    RESULTS: The results of the study show that total phenolic content (TPC) in soil and leaves of three species of Macaranga were highest in TPSF followed by freshwater swamp forest and flooded limestone forest, then dry land sites. Highest TPC values were associated with acidity (in TPSF) and waterlogging (in flooded forests). Moreover, phenolic compounds are rapidly leached from fallen senescent leaves, and could be reabsorbed by tree roots and converted into more complex phenolics within the leaves.

    CONCLUSIONS: Extreme conditions-waterlogging and acidity-may facilitate uptake and synthesis of protective phenolic compounds which are essential for impeded decomposition of organic matter in TPSF. Conversely, the ongoing drainage and degradation of TPSF, particularly for conversion to oil palm plantations, reverses the conditions necessary for peat accretion and carbon sequestration.

    Matched MeSH terms: Forests
  8. Xu H, Detto M, Fang S, Chazdon RL, Li Y, Hau BCH, et al.
    Commun Biol, 2020 06 19;3(1):317.
    PMID: 32561898 DOI: 10.1038/s42003-020-1041-y
    Legumes provide an essential service to ecosystems by capturing nitrogen from the atmosphere and delivering it to the soil, where it may then be available to other plants. However, this facilitation by legumes has not been widely studied in global tropical forests. Demographic data from 11 large forest plots (16-60 ha) ranging from 5.25° S to 29.25° N latitude show that within forests, leguminous trees have a larger effect on neighbor diversity than non-legumes. Where soil nitrogen is high, most legume species have higher neighbor diversity than non-legumes. Where soil nitrogen is low, most legumes have lower neighbor diversity than non-legumes. No facilitation effect on neighbor basal area was observed in either high or low soil N conditions. The legume-soil nitrogen positive feedback that promotes tree diversity has both theoretical implications for understanding species coexistence in diverse forests, and practical implications for the utilization of legumes in forest restoration.
    Matched MeSH terms: Forests
  9. Karim AA, Tie AP, Manan DMA, Zaidul ISM
    Compr Rev Food Sci Food Saf, 2008 Jul;7(3):215-228.
    PMID: 33467803 DOI: 10.1111/j.1541-4337.2008.00042.x
      The common industrial starches are typically derived from cereals (corn, wheat, rice, sorghum), tubers (potato, sweet potato), roots (cassava), and legumes (mung bean, green pea). Sago (Metroxylon sagu Rottb.) starch is perhaps the only example of commercial starch derived from another source, the stem of palm (sago palm). Sago palm has the ability to thrive in the harsh swampy peat environment of certain areas. It is estimated that there are about 2 million ha of natural sago palm forests and about 0.14 million ha of planted sago palm at present, out of a total swamp area of about 20 million ha in Asia and the Pacific Region, most of which are under- or nonutilized. Growing in a suitable environment with organized farming practices, sago palm could have a yield potential of up to 25 tons of starch per hectare per year. Sago starch yield per unit area could be about 3 to 4 times higher than that of rice, corn, or wheat, and about 17 times higher than that of cassava. Compared to the common industrial starches, however, sago starch has been somewhat neglected and relatively less attention has been devoted to the sago palm and its starch. Nevertheless, a number of studies have been published covering various aspects of sago starch such as molecular structure, physicochemical and functional properties, chemical/physical modifications, and quality issues. This article is intended to piece together the accumulated knowledge and highlight some pertinent information related to sago palm and sago starch studies.
    Matched MeSH terms: Forests
  10. Friess DA, Thompson BS, Brown B, Amir AA, Cameron C, Koldewey HJ, et al.
    Conserv Biol, 2016 10;30(5):933-49.
    PMID: 27341487 DOI: 10.1111/cobi.12784
    Many drivers of mangrove forest loss operate over large scales and are most effectively addressed by policy interventions. However, conflicting or unclear policy objectives exist at multiple tiers of government, resulting in contradictory management decisions. To address this, we considered four approaches that are being used increasingly or could be deployed in Southeast Asia to ensure sustainable livelihoods and biodiversity conservation. First, a stronger incorporation of mangroves into marine protected areas (that currently focus largely on reefs and fisheries) could resolve some policy conflicts and ensure that mangroves do not fall through a policy gap. Second, examples of community and government comanagement exist, but achieving comanagement at scale will be important in reconciling stakeholders and addressing conflicting policy objectives. Third, private-sector initiatives could protect mangroves through existing and novel mechanisms in degraded areas and areas under future threat. Finally, payments for ecosystem services (PES) hold great promise for mangrove conservation, with carbon PES schemes (known as blue carbon) attracting attention. Although barriers remain to the implementation of PES, the potential to implement them at multiple scales exists. Closing the gap between mangrove conservation policies and action is crucial to the improved protection and management of this imperiled coastal ecosystem and to the livelihoods that depend on them.
    Matched MeSH terms: Forests
  11. Brodie JF, Paxton M, Nagulendran K, Balamurugan G, Clements GR, Reynolds G, et al.
    Conserv Biol, 2016 10;30(5):950-61.
    PMID: 26648510 DOI: 10.1111/cobi.12667
    We examined the links between the science and policy of habitat corridors to better understand how corridors can be implemented effectively. As a case study, we focused on a suite of landscape-scale connectivity plans in tropical and subtropical Asia (Malaysia, Singapore, and Bhutan). The process of corridor designation may be more efficient if the scientific determination of optimal corridor locations and arrangement is synchronized in time with political buy-in and establishment of policies to create corridors. Land tenure and the intactness of existing habitat in the region are also important to consider because optimal connectivity strategies may be very different if there are few, versus many, political jurisdictions (including commercial and traditional land tenures) and intact versus degraded habitat between patches. Novel financing mechanisms for corridors include bed taxes, payments for ecosystem services, and strategic forest certifications. Gaps in knowledge of effective corridor design include an understanding of how corridors, particularly those managed by local communities, can be protected from degradation and unsustainable hunting. There is a critical need for quantitative, data-driven models that can be used to prioritize potential corridors or multicorridor networks based on their relative contributions to long-term metacommunity persistence.
    Matched MeSH terms: Forests
  12. Williams SH, Scriven SA, Burslem DFRP, Hill JK, Reynolds G, Agama AL, et al.
    Conserv Biol, 2020 08;34(4):934-942.
    PMID: 31840279 DOI: 10.1111/cobi.13450
    Conservation planning tends to focus on protecting species' ranges or landscape connectivity but seldom both-particularly in the case of diverse taxonomic assemblages and multiple planning goals. Therefore, information on potential trade-offs between maintaining landscape connectivity and achieving other conservation objectives is lacking. We developed an optimization approach to prioritize the maximal protection of species' ranges, ecosystem types, and forest carbon stocks, while also including habitat connectivity for range-shifting species and dispersal corridors to link protected area. We applied our approach to Sabah, Malaysia, where the state government mandated an increase in protected-area coverage of approximately 305,000 ha but did not specify where new protected areas should be. Compared with a conservation planning approach that did not incorporate the 2 connectivity features, our approach increased the protection of dispersal corridors and elevational connectivity by 13% and 21%, respectively. Coverage of vertebrate and plant species' ranges and forest types were the same whether connectivity was included or excluded. Our approach protected 2% less forest carbon and 3% less butterfly range than when connectivity features were not included. Hence, the inclusion of connectivity into conservation planning can generate large increases in the protection of landscape connectivity with minimal loss of representation of other conservation targets.
    Matched MeSH terms: Forests
  13. Williams PJ, Brodie JF
    Conserv Biol, 2023 Apr;37(2):e14014.
    PMID: 36178021 DOI: 10.1111/cobi.14014
    The loss of large animals due to overhunting and habitat loss potentially affects tropical tree populations and carbon cycling. Trees reliant on large-bodied seed dispersers are thought to be particularly negatively affected by defaunation. But besides seed dispersal, defaunation can also increase or decrease seed predation. It remains unclear how these different defaunation effects on early life stages ultimately affect tree population dynamics. We reviewed the literature on how tropical animal loss affects different plant life stages, and we conducted a meta-analysis of how defaunation affects seed predation. We used this information to parameterize models that altered matrix projection models from a suite of tree species to simulate defaunation-caused changes in seed dispersal and predation. We assessed how applying these defaunation effects affected population growth rates. On average, population-level effects of defaunation were negligible, suggesting that defaunation may not cause the massive reductions in forest carbon storage that have been predicted. In contrast to previous hypotheses, we did not detect an effect of seed size on changes in seed predation rates. The change in seed predation did not differ significantly between exclosure experiments and observational studies, although the results of observational studies were far more variable. Although defaunation surely affects certain tree taxa, species that benefit or are harmed by it and net changes in forest carbon storage cannot currently be predicted based on available data. Further research on how factors such as seed predation vary across tree species and defaunation scenarios is necessary for understanding cascading changes in species composition and diversity.
    Matched MeSH terms: Forests
  14. Rojas-Castillo OA, Kepfer Rojas S, Juen L, Montag LFA, Carvalho FG, Mendes TP, et al.
    Conserv Biol, 2024 Feb;38(1):e14172.
    PMID: 37650444 DOI: 10.1111/cobi.14172
    The expansion of oil palm plantations has led to land-use change and deforestation in the tropics, which has affected biodiversity. Although the impacts of the crop on terrestrial biodiversity have been extensively reviewed, its effects on freshwater biodiversity remain relatively unexplored. We reviewed the research assessing the impacts of forest-to-oil palm conversion on freshwater biota and the mitigating effect of riparian buffers on these impacts. We searched for studies comparing taxa richness, species abundance, and community composition of macroinvertebrates, amphibians, and fish in streams in forests (primary and disturbed) and oil palm plantations with and without riparian buffers. Then, we conducted a meta-analysis to quantify the overall effect of the land-use change on the 3 taxonomic groups. Twenty-nine studies fulfilled the inclusion criteria. On average, plantations lacking buffers hosted 44% and 19% fewer stream taxa than primary and disturbed forests, respectively. Stream taxa on plantations with buffers were 24% lower than in primary forest and did not differ significantly from disturbed forest. In contrast, stream community composition differed between forests and plantations regardless of the presence of riparian buffers. These differences were attributed to agrochemical use and altered environmental conditions in the plantations, including temperature changes, worsened water conditions, microhabitat loss, and food and shelter depletion. On aggregate, abundance did not differ significantly among land uses because increases in generalist species offset the population decline of vulnerable forest specialists in the plantation. Our results reveal significant impacts of forest-to-oil palm conversion on freshwater biota, particularly taxa richness and composition (but not aggregate abundance). Although preserving riparian buffers in the plantations can mitigate the loss of various aquatic species, it cannot conserve primary forest communities. Therefore, safeguarding primary forests from the oil palm expansion is crucial, and further research is needed to address riparian buffers as a promising mitigation strategy in agricultural areas.
    Matched MeSH terms: Forests
  15. Evans MN, Guerrero-Sanchez S, Kille P, Müller CT, Bakar MSA, Goossens B
    Conserv Physiol, 2020;8(1):coaa127.
    PMID: 33408869 DOI: 10.1093/conphys/coaa127
    Agricultural development is a major threat to global biodiversity, and effective conservation actions are crucial. Physiological repercussions of life alongside human-modified landscapes can undermine adaptable species' health and population viability; however, baseline data are lacking for many wildlife species. We assessed the physiological status of a generalist carnivore, the Malay civet (Viverra tangalunga), persisting within an extensively human-modified system in Sabah, Malaysian Borneo. We characterized hematology and serum biochemistry panels from civets sampled across a mosaic landscape comprising tropical forest fragments and oil palm plantations. Intra-population variation in certain blood parameters were explained by expected biological drivers such as sex, age category and sampling season. Furthermore, we determined several erythrocyte measures, immune cell counts and dietary biochemistry markers significantly varied with proximity to oil palm plantation boundaries. These findings were supported by a case study, whereby blood profiles of GPS collared male civets were contrasted based on their exclusive use of forests or use of oil palm plantations. These data provide robust and valuable first insights into this species' physiological status and suggest agricultural landscapes are impacting the persisting population.
    Matched MeSH terms: Forests
  16. Seltmann A, Czirják GÁ, Courtiol A, Bernard H, Struebig MJ, Voigt CC
    Conserv Physiol, 2017;5(1):cox020.
    PMID: 28421138 DOI: 10.1093/conphys/cox020
    Anthropogenic habitat disturbance is a major threat to biodiversity worldwide. Yet, before population declines are detectable, individuals may suffer from chronic stress and impaired immunity in disturbed habitats, making them more susceptible to pathogens and adverse weather conditions. Here, we tested in a paleotropical forest with ongoing logging and fragmentation, whether habitat disturbance influences the body mass and immunity of bats. We measured and compared body mass, chronic stress (indicated by neutrophil to lymphocyte ratios) and the number of circulating immune cells between several bat species with different roost types living in recovering areas, actively logged forests, and fragmented forests in Sabah, Malaysia. In a cave-roosting species, chronic stress levels were higher in individuals from fragmented habitats compared with conspecifics from actively logged areas. Foliage-roosting species showed a reduced body mass and decrease in total white blood cell counts in actively logged areas and fragmented forests compared with conspecifics living in recovering habitats. Our study highlights that habitat disturbance may have species-specific effects on chronic stress and immunity in bats that are potentially related to the roost type. We identified foliage-roosting species as particularly sensitive to forest habitat deterioration. These species may face a heightened extinction risk in the near future if anthropogenic habitat alterations continue.
    Matched MeSH terms: Forests
  17. Meijaard E, Sherman J, Ancrenaz M, Wich SA, Santika T, Voigt M
    Curr Biol, 2018 11 05;28(21):R1241-R1242.
    PMID: 30399343 DOI: 10.1016/j.cub.2018.09.052
    A recent report, published by the Government of Indonesia with support from the Food and Agricultural Organization and Norway's International Climate and Forest Initiative, states that orangutan populations (Pongo spp.) have increased by more than 10% in Indonesia from 2015 to 2017, exceeding the government target of an annual 2% population increase [1]. This assessment is in strong contrast with recent publications that showed that the Bornean orangutan (P. pygmaeus) lost more than 100,000 individuals in the past 16 years [2] and declined by at least 25% over the past 10 years [3]. Furthermore, recent work has also demonstrated that both Sumatran orangutans (P. abelii) and the recently described Tapanuli orangutan (P. tapanuliensis) lost more than 60% of their key habitats between 1985 and 2007, and ongoing land use changes are expected to result in an 11-27% decline in their populations by 2020 [4,5]. Most scientific data indicate that the survival of these species continues to be seriously threatened by deforestation and killing [4,6,7] and thus all three are Critically Endangered under the International Union for Conservation of Nature's Red List.
    Matched MeSH terms: Forests
  18. Gustafsson M, Gustafsson L, Alloysius D, Falck J, Yap S, Karlsson A, et al.
    Data Brief, 2016 Mar;6:466-70.
    PMID: 26900591 DOI: 10.1016/j.dib.2015.12.048
    The data presented in this paper is supporting the research article "Life history traits predict the response to increased light among 33 tropical rainforest tree species" [3]. We show basic growth and survival data collected over the 6 years duration of the experiment, as well as data from traits inventories covering 12 tree traits collected prior to and after a canopy reduction treatment in 2013. Further, we also include canopy closure and forest light environment data from measurements with hemispherical photographs before and after the treatment.
    Matched MeSH terms: Forests
  19. Rupert R, Lie GJCW, John DV, Annammala KV, Jani J, Rodrigues KF
    Data Brief, 2020 Dec;33:106351.
    PMID: 33072827 DOI: 10.1016/j.dib.2020.106351
    The data provided in the article includes the sequence of bacterial 16S rRNA gene from a high conservation value forest, logged forest, rubber plantation and oil palm plantation collected at Kelantan river basin. The logged forest area was previously notified as a flooding region. The total gDNA of bacterial community was amplified via polymerase chain reaction at V3-V4 regions using a pair of specific universal primer. Amplicons were sequenced on Illumina HiSeq paired-end platform to generate 250 bp paired-end raw reads. Several bioinformatics tools such as FLASH, QIIME and UPARSE were used to process the reads generated for OTU analysis. Meanwhile, R&D software was used to construct the taxonomy tree for all samples. Raw data files are available at the Sequence Read Archive (SRA), NCBI and data information can be found at the BioProject and BioSample, NCBI. The data shows the comparison of bacterial community between the natural forest and different land uses.
    Matched MeSH terms: Forests
  20. Saliu IS, Wolswijk G, Satyanarayana B, Fisol MAB, Decannière C, Lucas R, et al.
    Data Brief, 2020 Dec;33:106386.
    PMID: 33102654 DOI: 10.1016/j.dib.2020.106386
    The dataset contains tree height data collected in 200 mangrove and non-mangrove trees sampled in various sites in Malaysia. Different height measurement methods were performed, including visual measurements (stick, thumb rule) and precision field instruments (clinometer, laser rangefinder and altimeter), which were compared against benchmark values obtained using an unmanned aerial vehicle (UAV) and a Leica distometer. The core data have been analysed and interpreted in the paper by Saliu et al. ''An accuracy analysis of mangrove tree height mensuration using forestry techniques, hypsometers and UAVs '' [1], in which the accuracy of each method for tree height measurement was discussed.
    Matched MeSH terms: Forests
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links