Displaying publications 21 - 29 of 29 in total

Abstract:
Sort:
  1. Fatin Azwa Haruddin
    Orient Neuron Nexus, 2010;1(1):13-16.
    MyJurnal
    Traumatic brain injury (TBI) is known to inflict significant morbidity and mortality worldwide. In severe TBI cases, the resulting physical and cognitive impairments incur high management and rehabilitation costs that crucially involve monitoring intracranial pressure (ICP) and improving brain oxygenation. Normobaric Hyperoxia Treatment (NBOT) is a therapeutic strategy to improve brain oxygen metabolism and to decrease ICP by reducing tissue swelling and deactivating toxin. NBOT is administered by increasing the inspired oxygen concentration to 100% in normal atmospheric pressure. Previous studies involving NBOT had explored its effectiveness to salvage the TBI-related cognitive and motor deficits. However, the focus of these studies has frequently been on the cortical lesions despite the known facts that TBI often inflicts tissue damage to the subcortical areas such as the basal ganglia. There are growing evidence to support recent functional theories that implicate a pivotal role of the basal ganglia in regulating normal movements and cognition through dopamine (DA) and glutamate interaction. Thus, tissue damages leading to TBI-related motor and cognitive deficits may involve the different affected brain regions. This minireview attempts to highlight the key processes involved in the pathophysiology of severe TBI and offers insights into the role of NBOT by exploring its potential effects on the cerebral energy metabolism and gene expression patterns of dopamine receptor in a mouse model.
    Matched MeSH terms: Basal Ganglia
  2. Badrin S, Mohamad N, Yunus NA, Zulkifli MM
    Korean J Fam Med, 2017 Nov;38(6):380-382.
    PMID: 29209479 DOI: 10.4082/kjfm.2017.38.6.380
    Psychiatric symptoms may be related to a silent cerebral infarct, a phenomenon that has been described previously in literature. Acute psychosis or other neuropsychiatric symptoms including depression may present in stroke patients and patients with lesions either within the prefrontal or occipital cortices, or in subcortical areas such as the basal ganglia, thalamus, mid-brain, and brainstem. Psychosis in clinical stroke or in silent cerebral infarction is uncommon and not well documented in the literature. Neurological deficits are the most common presentation in stroke, and nearly a third of patients that suffer a stroke may experience psychological disorders such as depression and anxiety, related to physical disability. The present case report describes an elderly female patient who presented with hallucinations and depressive symptoms, and was discovered to have a recent right frontal brain infarction, without other significant neurological deficits.
    Matched MeSH terms: Basal Ganglia
  3. Smith ES, Smith DR, Eyring C, Braileanu M, Smith-Connor KS, Ei Tan Y, et al.
    Neurobiol Learn Mem, 2019 Nov;165:106962.
    PMID: 30502397 DOI: 10.1016/j.nlm.2018.11.007
    Rett Syndrome (RTT) is a genetic disorder that is caused by mutations in the x-linked gene coding for methyl-CpG-biding-protein 2 (MECP2) and that mainly affects females. Male and female transgenic mouse models of RTT have been studied extensively, and we have learned a great deal regarding RTT neuropathology and how MeCP2 deficiency may be influencing brain function and maturation. In this manuscript we review what is known concerning structural and coinciding functional and behavioral deficits in RTT and in mouse models of MeCP2 deficiency. We also introduce our own corroborating data regarding behavioral phenotype and morphological alterations in volume of the cortex and striatum and the density of neurons, aberrations in experience-dependent plasticity within the barrel cortex and the impact of MeCP2 loss on glial structure. We conclude that regional structural changes in genetic models of RTT show great similarity to the alterations in brain structure of patients with RTT. These region-specific modifications often coincide with phenotype onset and contribute to larger issues of circuit connectivity, progression, and severity. Although the alterations seen in mouse models of RTT appear to be primarily due to cell-autonomous effects, there are also non-cell autonomous mechanisms including those caused by MeCP2-deficient glia that negatively impact healthy neuronal function. Collectively, this body of work has provided a solid foundation on which to continue to build our understanding of the role of MeCP2 on neuronal and glial structure and function, its greater impact on neural development, and potential new therapeutic avenues.
    Matched MeSH terms: Basal Ganglia/pathology
  4. Lee C, Wu KH, Habil H, Dyachkova Y, Lee P
    Aust N Z J Psychiatry, 2006 May;40(5):437-45.
    PMID: 16683970
    To examine clinical outcomes in Asian patients with schizophrenia receiving monotherapy with olanzapine, risperidone or typical antipsychotics in naturalistic settings.
    Matched MeSH terms: Basal Ganglia Diseases/chemically induced; Basal Ganglia Diseases/epidemiology
  5. Najafi R, Hosseini A, Ghaznavi H, Mehrzadi S, Sharifi AM
    Brain Res Bull, 2017 May;131:117-122.
    PMID: 28373151 DOI: 10.1016/j.brainresbull.2017.03.013
    OBJECTIVE: Neuropathies are a nerve disorders that caused by diabetes. Neuropathy affects over 50% of diabetic patients. High blood glucose and their toxic byproducts are the main causes for nerve dysfunction. In the present study, we examined the neroprotective effects of cerium oxide (CeO2) nanoparticles in diabetic rats.

    METHOD: Rats divided into four groups: control group, diabetic group, the diabetic group treated with CeO2nanoparticle at a dose of 65mg/kg and diabetic group received CeO2nanoparticle at a dose of 85mg/kg. Diabetes was induced by single intraperitoneal injection of 65mg/kg streptozotocin (STZ). 8 weeks after the induction of diabetes, body weight and pain sensitivity in all groups were measured. The blood sample was collected for biochemical analysis. The dorsal root ganglion (DRG) neurons were isolated for histopathological stain and morphometric parameters studies.

    RESULTS: Reduction of body weight, total thiol molecules (TTM), total antioxidant power (TAP) and ADP/ATP ratio in diabetic rat was reversed by CeO2nanoparticles administration. We showed that lipid peroxidation (LPO) and nociception latency were significantly increased in STZ-treated rats and decreased after CeO2nanoparticles administration. DRG neurons showed obvious vacuole and various changes in diameter, area and the count of A and B cells in STZ-diabetic rat. CeO2nanoparticles improved the histopathology and morphological abnormalities of DRG neurons.

    CONCLUSION: Our study concluded the CeO2nanoparticles have a protective effect against the development of DN.

    Matched MeSH terms: Ganglia, Spinal/drug effects
  6. Abdullah AC, Adnan JS, Rahman NA, Palur R
    Malays J Med Sci, 2017 Mar;24(1):104-112.
    PMID: 28381933 DOI: 10.21315/mjms2017.24.1.11
    INTRODUCTION: Computed tomography (CT) is the preferred diagnostic toolkit for head and brain imaging of head injury. A recent development is the invention of a portable CT scanner that can be beneficial from a clinical point of view.

    AIM: To compare the quality of CT brain images produced by a fixed CT scanner and a portable CT scanner (CereTom).

    METHODS: This work was a single-centre retrospective study of CT brain images from 112 neurosurgical patients. Hounsfield units (HUs) of the images from CereTom were measured for air, water and bone. Three assessors independently evaluated the images from the fixed CT scanner and CereTom. Streak artefacts, visualisation of lesions and grey-white matter differentiation were evaluated at three different levels (centrum semiovale, basal ganglia and middle cerebellar peduncles). Each evaluation was scored 1 (poor), 2 (average) or 3 (good) and summed up to form an ordinal reading of 3 to 9.

    RESULTS: HUs for air, water and bone from CereTom were within the recommended value by the American College of Radiology (ACR). Streak artefact evaluation scores for the fixed CT scanner was 8.54 versus 7.46 (Z = -5.67) for CereTom at the centrum semiovale, 8.38 (SD = 1.12) versus 7.32 (SD = 1.63) at the basal ganglia and 8.21 (SD = 1.30) versus 6.97 (SD = 2.77) at the middle cerebellar peduncles. Grey-white matter differentiation showed scores of 8.27 (SD = 1.04) versus 7.21 (SD = 1.41) at the centrum semiovale, 8.26 (SD = 1.07) versus 7.00 (SD = 1.47) at the basal ganglia and 8.38 (SD = 1.11) versus 6.74 (SD = 1.55) at the middle cerebellar peduncles. Visualisation of lesions showed scores of 8.86 versus 8.21 (Z = -4.24) at the centrum semiovale, 8.93 versus 8.18 (Z = -5.32) at the basal ganglia and 8.79 versus 8.06 (Z = -4.93) at the middle cerebellar peduncles. All results were significant with P-value < 0.01.

    CONCLUSIONS: Results of the study showed a significant difference in image quality produced by the fixed CT scanner and CereTom, with the latter being more inferior than the former. However, HUs of the images produced by CereTom do fulfil the recommendation of the ACR.

    Matched MeSH terms: Basal Ganglia
  7. Wong KH, Kanagasabapathy G, Naidu M, David P, Sabaratnam V
    Chin J Integr Med, 2016 Oct;22(10):759-67.
    PMID: 25159861 DOI: 10.1007/s11655-014-1624-2
    OBJECTIVE: To study the ability of aqueous extract of Hericium erinaceus mushroom in the treatment of nerve injury following peroneal nerve crush in Sprague-Dawley rats.

    METHODS: Aqueous extract of Hericium erinaceus was given by daily oral administration following peroneal nerve crush injury in Sprague-Dawley rats. The expression of protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) signaling pathways; and c-Jun and c-Fos genes were studied in dorsal root ganglia (DRG) whereas the activity of protein synthesis was assessed in peroneal nerves by immunohistochemical method.

    RESULTS: Peripheral nerve injury leads to changes at the axonal site of injury and remotely located DRG containing cell bodies of sensory afferent neurons. Immunofluorescence studies showed that DRG neurons ipsilateral to the crush injury in rats of treated groups expressed higher immunoreactivities for Akt, MAPK, c-Jun and c-Fos as compared with negative control group (P <0.05). The intensity of nuclear ribonucleoprotein in the distal segments of crushed nerves of treated groups was significantly higher than in the negative control group (P <0.05).

    CONCLUSION: H. erinaceus is capable of promoting peripheral nerve regeneration after injury. Potential signaling pathways include Akt, MAPK, c-Jun, and c-Fos, and protein synthesis have been shown to be involved in its action.

    Matched MeSH terms: Ganglia, Spinal/metabolism
  8. Shoji Y
    J Oral Sci, 2011 Mar;53(1):125-7.
    PMID: 21467825
    Cluster headache is a neurovascular disorder characterized by attacks of severe and strictly unilateral pain presenting in and around the orbit and temporal area. Attacks occur in series lasting for weeks or months separated by remission periods. An individual attack lasts 15-180 min with a frequency of once every other day to as often as 8 times per day. Ipsilateral radiation of the headache to orofacial regions, including the teeth, is not unusual. The area of involvement may obscure the diagnosis and lead to irreversible and unnecessary dental treatment. A case in which cluster attacks occurred immediately after a dental procedure is described.
    Matched MeSH terms: Ganglia, Parasympathetic
  9. Muslimov IA, Tuzhilin A, Tang TH, Wong RK, Bianchi R, Tiedge H
    J. Cell Biol., 2014 May 26;205(4):493-510.
    PMID: 24841565 DOI: 10.1083/jcb.201310045
    A key determinant of neuronal functionality and plasticity is the targeted delivery of select ribonucleic acids (RNAs) to synaptodendritic sites of protein synthesis. In this paper, we ask how dendritic RNA transport can be regulated in a manner that is informed by the cell's activity status. We describe a molecular mechanism in which inducible interactions of noncanonical RNA motif structures with targeting factor heterogeneous nuclear ribonucleoprotein (hnRNP) A2 form the basis for activity-dependent dendritic RNA targeting. High-affinity interactions between hnRNP A2 and conditional GA-type RNA targeting motifs are critically dependent on elevated Ca(2+) levels in a narrow concentration range. Dendritic transport of messenger RNAs that carry such GA motifs is inducible by influx of Ca(2+) through voltage-dependent calcium channels upon β-adrenergic receptor activation. The combined data establish a functional correspondence between Ca(2+)-dependent RNA-protein interactions and activity-inducible RNA transport in dendrites. They also indicate a role of genomic retroposition in the phylogenetic development of RNA targeting competence.
    Matched MeSH terms: Ganglia, Sympathetic/cytology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links