Displaying publications 21 - 22 of 22 in total

Abstract:
Sort:
  1. Danjuma L, Ling MP, Hamat RA, Higuchi A, Alarfaj AA, Marlina, et al.
    Tuberculosis (Edinb), 2017 12;107:38-47.
    PMID: 29050770 DOI: 10.1016/j.tube.2017.03.006
    Mycobacterium tuberculosis has a remarkable ability of long-term persistence despite vigorous host immunity and prolonged therapy. The bacteria persist in secure niches such as the mesenchymal stem cells in the bone marrow and reactivate the disease, leading to therapeutic failure. Many bacterial cells can remain latent within a diseased tissue so that their genetic material can be incorporated into the genetic material of the host tissue. This incorporated genetic material reproduces in a manner similar to that of cellular DNA. After the cell division, the incorporated gene is reproduced normally and distributed proportionately between the two progeny. This inherent adoption of long-term persistence and incorporating the bacterial genetic material into that of the host tissue remains and is considered imperative for microbial advancement and chemotherapeutic resistance; moreover, new evidence indicates that the bacteria might pass on genetic material to the host DNA sequence. Several studies focused on the survival mechanism of M. tuberculosis in the host immune system with the aim of helping the efforts to discover new drugs and vaccines against tuberculosis. This review explored the mechanisms through which this bacterium affects the expression of human genes. The first part of the review summarizes the current knowledge about the interactions between microbes and host microenvironment, with special reference to the M. tuberculosis neglected persistence in immune cells and stem cells. Then, we focused on how bacteria can affect human genes and their expression. Furthermore, we analyzed the literature base on the process of cell death during tuberculosis infection, giving particular emphasis to gene methylation as an inherited process in the neutralization of possibly injurious gene components in the genome. The final section discusses recent advances related to the M. tuberculosis interaction with host epigenetic circuitry.
    Matched MeSH terms: Mycobacterium tuberculosis/immunology
  2. Sarkar S, Leo BF, Carranza C, Chen S, Rivas-Santiago C, Porter AE, et al.
    PLoS One, 2015;10(11):e0143077.
    PMID: 26580078 DOI: 10.1371/journal.pone.0143077
    Exposure to silver nanoparticles (AgNP) used in consumer products carries potential health risks including increased susceptibility to infectious pathogens. Systematic assessments of antimicrobial macrophage immune responses in the context of AgNP exposure are important because uptake of AgNP by macrophages may lead to alterations of innate immune cell functions. In this study we examined the effects of exposure to AgNP with different particle sizes (20 and 110 nm diameters) and surface chemistry (citrate or polyvinlypyrrolidone capping) on cellular toxicity and innate immune responses against Mycobacterium tuberculosis (M.tb) by human monocyte-derived macrophages (MDM). Exposures of MDM to AgNP significantly reduced cellular viability, increased IL8 and decreased IL10 mRNA expression. Exposure of M.tb-infected MDM to AgNP suppressed M.tb-induced expression of IL1B, IL10, and TNFA mRNA. Furthermore, M.tb-induced IL-1β, a cytokine critical for host resistance to M.tb, was inhibited by AgNP but not by carbon black particles indicating that the observed immunosuppressive effects of AgNP are particle specific. Suppressive effects of AgNP on the M.tb-induced host immune responses were in part due to AgNP-mediated interferences with the TLR signaling pathways that culminate in the activation of the transcription factor NF-κB. AgNP exposure suppressed M.tb-induced expression of a subset of NF-κB mediated genes (CSF2, CSF3, IFNG, IL1A, IL1B, IL6, IL10, TNFA, NFKB1A). In addition, AgNP exposure increased the expression of HSPA1A mRNA and the corresponding stress-induced Hsp72 protein. Up-regulation of Hsp72 by AgNP can suppress M.tb-induced NF-κB activation and host immune responses. The observed ability of AgNP to modulate infectious pathogen-induced immune responses has important public health implications.
    Matched MeSH terms: Mycobacterium tuberculosis/immunology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links