Displaying publications 21 - 23 of 23 in total

Abstract:
Sort:
  1. Samaram S, Mirhosseini H, Tan CP, Ghazali HM
    Molecules, 2013 Oct 10;18(10):12474-87.
    PMID: 24152670 DOI: 10.3390/molecules181012474
    The main objective of the current work was to evaluate the suitability of ultrasound-assisted extraction (UAE) for the recovery of oil from papaya seed as compared to conventional extraction techniques (i.e., Soxhlet extraction (SXE) and solvent extraction (SE)). In the present study, the recovery yield, fatty acid composition and triacylglycerol profile of papaya seed oil obtained from different extraction methods and conditions were compared. Results indicated that both solvent extraction (SE, 12 h/25 °C) and ultrasound-assisted extraction (UAE) methods recovered relatively high yields (79.1% and 76.1% of total oil content, respectively). Analysis of fatty acid composition revealed that the predominant fatty acids in papaya seed oil were oleic (18:1, 70.5%-74.7%), palmitic (16:0, 14.9%-17.9%), stearic (18:0, 4.50%-5.25%), and linoleic acid (18:2, 3.63%-4.6%). Moreover, the most abundant triacylglycerols of papaya seed oil were triolein (OOO), palmitoyl diolein (POO) and stearoyl oleoyl linolein (SOL). In this study, ultrasound-assisted extraction (UAE) significantly (p < 0.05) influenced the triacylglycerol profile of papaya seed oil, but no significant differences were observed in the fatty acid composition of papaya seed oil extracted by different extraction methods (SXE, SE and UAE) and conditions.
    Matched MeSH terms: Plant Oils/isolation & purification*
  2. Ghanbari R, Anwar F, Alkharfy KM, Gilani AH, Saari N
    Int J Mol Sci, 2012;13(3):3291-3340.
    PMID: 22489153 DOI: 10.3390/ijms13033291
    The Olive tree (Olea europaea L.), a native of the Mediterranean basin and parts of Asia, is now widely cultivated in many other parts of the world for production of olive oil and table olives. Olive is a rich source of valuable nutrients and bioactives of medicinal and therapeutic interest. Olive fruit contains appreciable concentration, 1-3% of fresh pulp weight, of hydrophilic (phenolic acids, phenolic alchohols, flavonoids and secoiridoids) and lipophilic (cresols) phenolic compounds that are known to possess multiple biological activities such as antioxidant, anticarcinogenic, antiinflammatory, antimicrobial, antihypertensive, antidyslipidemic, cardiotonic, laxative, and antiplatelet. Other important compounds present in olive fruit are pectin, organic acids, and pigments. Virgin olive oil (VOO), extracted mechanically from the fruit, is also very popular for its nutritive and health-promoting potential, especially against cardiovascular disorders due to the presence of high levels of monounsaturates and other valuable minor components such as phenolics, phytosterols, tocopherols, carotenoids, chlorophyll and squalene. The cultivar, area of production, harvest time, and the processing techniques employed are some of the factors shown to influence the composition of olive fruit and olive oil. This review focuses comprehensively on the nutrients and high-value bioactives profile as well as medicinal and functional aspects of different parts of olives and its byproducts. Various factors affecting the composition of this food commodity of medicinal value are also discussed.
    Matched MeSH terms: Plant Oils/isolation & purification
  3. Wahab IR, Blagojević PD, Radulović NS, Boylan F
    Chem Biodivers, 2011 Nov;8(11):2005-14.
    PMID: 22083913 DOI: 10.1002/cbdv.201100135
    Analysis by GC and GC/MS of the essential oil obtained from Malaysian Curcuma mangga Val. & Zijp (Zingiberaceae) rhizomes allowed the identification of 97 constituents, comprising 89.5% of the total oil composition. The major compounds were identified as myrcene (1; 46.5%) and β-pinene (2; 14.6%). The chemical composition of this and additional 13 oils obtained from selected Curcuma L. taxa were compared using multivariate statistical analyses (agglomerative hierarchical cluster analysis and principal component analysis). The results of the statistical analyses of this particular data set pointed out that 1 could be potentially used as a valuable infrageneric chemotaxonomical marker for C. mangga. Moreover, it seems that C. mangga, C. xanthorrhiza Roxb., and C. longa L. are, with respect to the volatile secondary metabolites, closely related. In addition, comparison of the essential oil profiles revealed a potential influence of the environmental (geographical) factors, alongside with the genetic ones, on the production of volatile secondary metabolites in Curcuma taxa.
    Matched MeSH terms: Plant Oils/isolation & purification*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links