Displaying publications 21 - 40 of 51 in total

Abstract:
Sort:
  1. Granados A, Brodie JF, Bernard H, O'Brien MJ
    Ecol Appl, 2017 10;27(7):2092-2101.
    PMID: 28660670 DOI: 10.1002/eap.1592
    Vertebrate granivores destroy plant seeds, but whether animal-induced seed mortality alters plant recruitment varies with habitat context, seed traits, and among granivore species. An incomplete understanding of seed predation makes it difficult to predict how widespread extirpations of vertebrate granivores in tropical forests might affect tree communities, especially in the face of habitat disturbance. Many tropical forests are simultaneously affected by animal loss as well as habitat disturbance, but the consequences of each for forest regeneration are often studied separately or additively, and usually on a single plant demographic stage. The combined impacts of these threats could affect plant recruitment in ways that are not apparent when studied in isolation. We used wire cages to exclude large (elephants), medium, (sambar deer, bearded pigs, muntjac deer), and small (porcupines, chevrotains) ground-dwelling mammalian granivores and herbivores in logged and unlogged forests in Malaysian Borneo. We assessed the interaction between habitat disturbance (selective logging) and experimental defaunation on seed survival, germination, and seedling establishment in five dominant dipterocarp tree species spanning a 21-fold gradient in seed size. Granivore-induced seed mortality was consistently higher in logged forest. Germination of unpredated seeds was reduced in logged forest and in the absence of small to large-bodied mammals. Experimental defaunation increased germination and reduced seed removal but had little effect on seed survival. Seedling recruitment however, was more likely where logging and animal loss occurred together. The interacting effects of logging and hunting could therefore, actually increase seedling establishment, suggesting that the loss of mammals in disturbed forest could have important consequences for forest regeneration and composition.
    Matched MeSH terms: Trees/physiology*
  2. Rajagopal H, Mokhtar N, Tengku Mohmed Noor Izam TF, Wan Ahmad WK
    PLoS One, 2020;15(5):e0233320.
    PMID: 32428043 DOI: 10.1371/journal.pone.0233320
    Image Quality Assessment (IQA) is essential for the accuracy of systems for automatic recognition of tree species for wood samples. In this study, a No-Reference IQA (NR-IQA), wood NR-IQA (WNR-IQA) metric was proposed to assess the quality of wood images. Support Vector Regression (SVR) was trained using Generalized Gaussian Distribution (GGD) and Asymmetric Generalized Gaussian Distribution (AGGD) features, which were measured for wood images. Meanwhile, the Mean Opinion Score (MOS) was obtained from the subjective evaluation. This was followed by a comparison between the proposed IQA metric, WNR-IQA, and three established NR-IQA metrics, namely Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE), deepIQA, Deep Bilinear Convolutional Neural Networks (DB-CNN), and five Full Reference-IQA (FR-IQA) metrics known as MSSIM, SSIM, FSIM, IWSSIM, and GMSD. The proposed WNR-IQA metric, BRISQUE, deepIQA, DB-CNN, and FR-IQAs were then compared with MOS values to evaluate the performance of the automatic IQA metrics. As a result, the WNR-IQA metric exhibited a higher performance compared to BRISQUE, deepIQA, DB-CNN, and FR-IQA metrics. Highest quality images may not be routinely available due to logistic factors, such as dust, poor illumination, and hot environment present in the timber industry. Moreover, motion blur could occur due to the relative motion between the camera and the wood slice. Therefore, the advantage of WNR-IQA could be seen from its independency from a "perfect" reference image for the image quality evaluation.
    Matched MeSH terms: Trees/physiology
  3. Osada N, Takeda H, Furukawa A, Awang M
    Tree Physiol, 2002 Jun;22(9):625-32.
    PMID: 12069918
    Allometry of shoot extension units (hereafter termed "current shoots") was analyzed in a Malaysian canopy species, Elateriospermum tapos Bl. (Euphorbiaceae). Changes in current shoot allometry with increasing tree height were related to growth and maintenance of tree crowns. Total biomass, biomass allocation ratio of non-photosynthetic to photosynthetic organs, and wood density of current shoots were unrelated to tree height. However, shoot structure changed with tree height. Compared with short trees, tall trees produced current shoots of the same mass but with thicker and shorter stems. Current shoots with thin and long stems enhanced height growth in short trees, whereas in tall trees, thick and short current shoots may reduce mechanical and hydraulic stresses. Furthermore, compared with short trees, tall trees produced current shoots with more leaves of lower dry mass, smaller area, and smaller specific leaf area (SLA). Short trees adapted to low light flux density by reducing mutual shading with large leaves having a large SLA. In contrast, tall trees reduced mutual shading within a shoot by producing more small leaves in distal than in proximal parts of the shoot stem. The production of a large number of small leaves promoted light penetration into the dense crowns of tall trees. All of these characteristics suggest that the change in current shoot structure with increasing tree height is adaptive in E. tapos, enabling short trees to maximize height growth and tall trees to maximize light capture.
    Matched MeSH terms: Trees/physiology*
  4. Kenzo T, Ichie T, Watanabe Y, Yoneda R, Ninomiya I, Koike T
    Tree Physiol, 2006 Jul;26(7):865-73.
    PMID: 16585032
    Variations in leaf photosynthetic, morphological and biochemical properties with increasing plant height from seedlings to emergent trees were investigated in five dipterocarp species in a Malaysian tropical rain forest. Canopy openness increased significantly with tree height. Photosynthetic properties, such as photosynthetic capacity at light saturation, light compensation point, maximum rate of carboxylation and maximum rate of photosynthetic electron transport, all increased significantly with tree height. Leaf morphological and biochemical traits, such as leaf mass per area, palisade layer thickness, nitrogen concentration per unit area, chlorophyll concentration per unit dry mass and chlorophyll to nitrogen ratio, also changed significantly with tree height. Leaf properties had simple and significant relationships with tree height, with few intra- and interspecies differences. Our results therefore suggest that the photosynthetic capacity of dipterocarp trees depends on tree height, and that the trees adapt to the light environment by adjusting their leaf morphological and biochemical properties. These results should aid in developing models that can accurately estimate carbon dioxide flux and biomass production in tropical rain forests.
    Matched MeSH terms: Trees/physiology
  5. Makita N, Kosugi Y, Dannoura M, Takanashi S, Niiyama K, Kassim AR, et al.
    Tree Physiol, 2012 Mar;32(3):303-12.
    PMID: 22367761 DOI: 10.1093/treephys/tps008
    The root systems of forest trees are composed of different diameters and heterogeneous physiological traits. However, the pattern of root respiration rates from finer and coarser roots across various tropical species remains unknown. To clarify how respiration is related to the morphological traits of roots, we evaluated specific root respiration and its relationships to mean root diameter (D) of various diameter and root tissue density (RTD; root mass per unit root volume; gcm(-3)) and specific root length (SRL; root length per unit root mass; mg(-1)) of the fine roots among and within 14 trees of 13 species from a primary tropical rainforest in the Pasoh Forest Reserve in Peninsular Malaysia. Coarse root (2-269mm) respiration rates increased with decreasing D, resulting in significant relationships between root respiration and diameter across species. A model based on a radial gradient of respiration rates of coarse roots simulated the exponential decrease in respiration with diameter. The respiration rate of fine roots (<2mm) was much higher and more variable than those of larger diameter roots. For fine roots, the mean respiration rates for each species increased with decreasing D. The respiration rates of fine roots declined markedly with increasing RTD and increased with increasing SRL, which explained a significant portion of the variation in the respiration among the 14 trees from 13 species examined. Our results indicate that coarse root respiration in tree species follows a basic relationship with D across species and that most of the variation in fine root respiration among species is explained by D, RTD and SRL. We found that the relationship between root respiration and morphological traits provides a quantitative basis for separating fine roots from coarse roots and that the pattern holds across different species.
    Matched MeSH terms: Trees/physiology*
  6. Hill JK, Gray MA, Khen CV, Benedick S, Tawatao N, Hamer KC
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3265-76.
    PMID: 22006967 DOI: 10.1098/rstb.2011.0050
    Large areas of tropical forest now exist as remnants scattered across agricultural landscapes, and so understanding the impacts of forest fragmentation is important for biodiversity conservation. We examined species richness and nestedness among tropical forest remnants in birds (meta-analysis of published studies) and insects (field data for fruit-feeding Lepidoptera (butterflies and moths) and ants). Species-area relationships were evident in all four taxa, and avian and insect assemblages in remnants typically were nested subsets of those in larger areas. Avian carnivores and nectarivores and predatory ants were more nested than other guilds, implying that the sequential loss of species was more predictable in these groups, and that fragmentation alters the trophic organization of communities. For butterflies, the ordering of fragments to achieve maximum nestedness was by fragment area, suggesting that differences among fragments were driven mainly by extinction. In contrast for moths, maximum nestedness was achieved by ordering species by wing length; species with longer wings (implying better dispersal) were more likely to occur at all sites, including low diversity sites, suggesting that differences among fragments were driven more strongly by colonization. Although all four taxa exhibited high levels of nestedness, patterns of species turnover were also idiosyncratic, and thus even species-poor sites contributed to landscape-scale biodiversity, particularly for insects.
    Matched MeSH terms: Trees/physiology*
  7. Bagchi R, Philipson CD, Slade EM, Hector A, Phillips S, Villanueva JF, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3246-55.
    PMID: 22006965 DOI: 10.1098/rstb.2011.0034
    Much of the forest remaining in South East Asia has been selectively logged. The processes promoting species coexistence may be the key to the recovery and maintenance of diversity in these forests. One such process is the Janzen-Connell mechanism, where specialized natural enemies such as seed predators maintain diversity by inhibiting regeneration near conspecifics. In Neotropical forests, anthropogenic disturbance can disrupt the Janzen-Connell mechanism, but similar data are unavailable for South East Asia. We investigated the effects of conspecific density (two spatial scales) and distance from fruiting trees on seed and seedling survival of the canopy tree Parashorea malaanonan in unlogged and logged forests in Sabah, Malaysia. The production of mature seeds was higher in unlogged forest, perhaps because high adult densities facilitate pollination or satiate pre-dispersal predators. In both forest types, post-dispersal survival was reduced by small-scale (1 m(2)) conspecific density, but not by proximity to the nearest fruiting tree. Large-scale conspecific density (seeds per fruiting tree) reduced predation, probably by satiating predators. Higher seed production in unlogged forest, in combination with slightly higher survival, meant that recruitment was almost entirely limited to unlogged forest. Thus, while logging might not affect the Janzen-Connell mechanism at this site, it may influence the recruitment of particular species.
    Matched MeSH terms: Trees/physiology
  8. Ewers RM, Didham RK, Fahrig L, Ferraz G, Hector A, Holt RD, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3292-302.
    PMID: 22006969 DOI: 10.1098/rstb.2011.0049
    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.
    Matched MeSH terms: Trees/physiology*
  9. Imai N, Samejima H, Langner A, Ong RC, Kita S, Titin J, et al.
    PLoS One, 2009;4(12):e8267.
    PMID: 20011516 DOI: 10.1371/journal.pone.0008267
    Sustainable forest management (SFM), which has been recently introduced to tropical natural production forests, is beneficial in maintaining timber resources, but information about the co-benefits for biodiversity conservation and carbon sequestration is currently lacking.
    Matched MeSH terms: Trees/physiology*
  10. Kurokawa H, Nakashizuka T
    Ecology, 2008 Sep;89(9):2645-56.
    PMID: 18831185
    There is accumulating evidence that similar suites of plant traits may affect leaf palatability and leaf litter decomposability. However, the possible association between leaf herbivory and litter decomposition rates across species in species-diverse natural ecosystems such as tropical rain forests remains unexplored, despite its importance in estimating the herbivory effects on carbon and nutrient cycling of ecosystems. We found no strong association between leaf herbivory and litter decomposition rates across 40 tree species in a Malaysian tropical rain forest, even though the leaf and litter traits were tightly correlated. This is because the leaf and litter traits related to herbivory and decomposition rates in the field were inconsistent. Leaf toughness accounted for only a small part of the variation in the herbivory rate, whereas a number of litter traits (the leaf mass per area, lignin to nitrogen ratio, and condensed tannin concentration) accurately predicted the decomposition rate across species. These results suggest that herbivory rate across species may not be strongly related to single leaf traits, probably because plant-herbivore interactions in tropical rain forests are highly diverse; on the other hand, plant-decomposer interactions are less specific and can be governed by litter chemicals. We also investigated two factors, phylogeny and tree functional types, that could affect the relationship between herbivory and decomposition across species. Phylogenetic relatedness among the species did not affect the relationship between herbivory and decomposition. In contrast, when the plants were segregated according to their leaf emergence pattern, we found a significant positive relationship between herbivory and decomposition rates for continuous-leafing species. In these species, the condensed tannin to N ratios in leaves and litter were related to herbivory and decomposition rates, respectively. However, we did not observe a similar trend for synchronous-leafing species. These results suggest that the relationship between herbivory and decomposition may be more greatly affected by functional types than by phylogenetic relatedness among species. In conclusion, our results suggest that well-defended leaves are not necessarily less decomposable litter in a tropical rain forest community, implying that herbivory may not generate positive feedback for carbon and nutrient cycling in this type of ecosystem.
    Matched MeSH terms: Trees/physiology*
  11. Volkov I, Banavar JR, He F, Hubbell SP, Maritan A
    Nature, 2005 Dec 1;438(7068):658-61.
    PMID: 16319890
    The recurrent patterns in the commonness and rarity of species in ecological communities--the relative species abundance--have puzzled ecologists for more than half a century. Here we show that the framework of the current neutral theory in ecology can easily be generalized to incorporate symmetric density dependence. We can calculate precisely the strength of the rare-species advantage that is needed to explain a given RSA distribution. Previously, we demonstrated that a mechanism of dispersal limitation also fits RSA data well. Here we compare fits of the dispersal and density-dependence mechanisms for empirical RSA data on tree species in six New and Old World tropical forests and show that both mechanisms offer sufficient and independent explanations. We suggest that RSA data cannot by themselves be used to discriminate among these explanations of RSA patterns--empirical studies will be required to determine whether RSA patterns are due to one or the other mechanism, or to some combination of both.
    Matched MeSH terms: Trees/physiology*
  12. Cyranoski D
    Nature, 2005 Jul 21;436(7049):313.
    PMID: 16034382
    Matched MeSH terms: Trees/physiology
  13. Cyranoski D
    Nature, 2003 Dec 11;426(6967):592.
    PMID: 14668824
    Matched MeSH terms: Trees/physiology
  14. Bagchi R, Press MC, Scholes JD
    Ecol Lett, 2010 Jan;13(1):51-9.
    PMID: 19849708 DOI: 10.1111/j.1461-0248.2009.01397.x
    One important hypothesis to explain tree-species coexistence in tropical forests suggests that increased attack by natural enemies near conspecific trees gives locally rare species a competitive advantage. Host ranges of natural enemies generally encompass several closely related plant taxa suggesting that seedlings should also do poorly around adults of closely related species. We investigated the effects of adult Parashorea malaanonan on seedling survival in a Bornean rain forest. Survival of P. malaanonan seedlings was highest at intermediate distances from parent trees while heterospecific seedlings were unaffected by distance. Leaf herbivores did not drive this relationship. Survival of seedlings was lowest for P. malaanonan, and increased with phylogenetic dissimilarity from this species, suggesting that survival of close relatives of common species is reduced. This study suggests that distance dependence contributes to species coexistence and highlights the need for further investigation into the role of shared plant enemies in community dynamics.
    Matched MeSH terms: Trees/physiology*
  15. Usinowicz J, Chang-Yang CH, Chen YY, Clark JS, Fletcher C, Garwood NC, et al.
    Nature, 2017 10 05;550(7674):105-108.
    PMID: 28953870 DOI: 10.1038/nature24038
    The tropical forests of Borneo and Amazonia may each contain more tree species diversity in half a square kilometre than do all the temperate forests of Europe, North America, and Asia combined. Biologists have long been fascinated by this disparity, using it to investigate potential drivers of biodiversity. Latitudinal variation in many of these drivers is expected to create geographic differences in ecological and evolutionary processes, and evidence increasingly shows that tropical ecosystems have higher rates of diversification, clade origination, and clade dispersal. However, there is currently no evidence to link gradients in ecological processes within communities at a local scale directly to the geographic gradient in biodiversity. Here, we show geographic variation in the storage effect, an ecological mechanism that reduces the potential for competitive exclusion more strongly in the tropics than it does in temperate and boreal zones, decreasing the ratio of interspecific-to-intraspecific competition by 0.25% for each degree of latitude that an ecosystem is located closer to the Equator. Additionally, we find evidence that latitudinal variation in climate underpins these differences; longer growing seasons in the tropics reduce constraints on the seasonal timing of reproduction, permitting lower recruitment synchrony between species and thereby enhancing niche partitioning through the storage effect. Our results demonstrate that the strength of the storage effect, and therefore its impact on diversity within communities, varies latitudinally in association with climate. This finding highlights the importance of biotic interactions in shaping geographic diversity patterns, and emphasizes the need to understand the mechanisms underpinning ecological processes in greater detail than has previously been appreciated.
    Matched MeSH terms: Trees/physiology*
  16. O'Brien MJ, Reynolds G, Ong R, Hector A
    Nat Ecol Evol, 2017 Nov;1(11):1643-1648.
    PMID: 28963453 DOI: 10.1038/s41559-017-0326-0
    Occasional periods of drought are typical of most tropical forests, but climate change is increasing drought frequency and intensity in many areas across the globe, threatening the structure and function of these ecosystems. The effects of intermittent drought on tropical tree communities remain poorly understood and the potential impacts of intensified drought under future climatic conditions are even less well known. The response of forests to altered precipitation will be determined by the tolerances of different species to reduced water availability and the interactions among plants that alleviate or exacerbate the effects of drought. Here, we report the response of experimental monocultures and mixtures of tropical trees to simulated drought, which reveals a fundamental shift in the nature of interactions among species. Weaker competition for water in diverse communities allowed seedlings to maintain growth under drought while more intense competition among conspecifics inhibited growth under the same conditions. These results show that reduced competition for water among species in mixtures mediates community resistance to drought. The delayed onset of competition for water among species in more diverse neighbourhoods during drought has potential implications for the coexistence of species in tropical forests and the resilience of these systems to climate change.
    Matched MeSH terms: Trees/physiology*
  17. Smith JR, Ghazoul J, Burslem DFRP, Itoh A, Khoo E, Lee SL, et al.
    PLoS One, 2018;13(3):e0193501.
    PMID: 29547644 DOI: 10.1371/journal.pone.0193501
    Documenting the scale and intensity of fine-scale spatial genetic structure (FSGS), and the processes that shape it, is relevant to the sustainable management of genetic resources in timber tree species, particularly where logging or fragmentation might disrupt gene flow. In this study we assessed patterns of FSGS in three species of Dipterocarpaceae (Parashorea tomentella, Shorea leprosula and Shorea parvifolia) across four different tropical rain forests in Malaysia using nuclear microsatellite markers. Topographic heterogeneity varied across the sites. We hypothesised that forests with high topographic heterogeneity would display increased FSGS among the adult populations driven by habitat associations. This hypothesis was not supported for S. leprosula and S. parvifolia which displayed little variation in the intensity and scale of FSGS between sites despite substantial variation in topographic heterogeneity. Conversely, the intensity of FSGS for P. tomentella was greater at a more topographically heterogeneous than a homogeneous site, and a significant difference in the overall pattern of FSGS was detected between sites for this species. These results suggest that local patterns of FSGS may in some species be shaped by habitat heterogeneity in addition to limited gene flow by pollen and seed dispersal. Site factors can therefore contribute to the development of FSGS. Confirming consistency in species' FSGS amongst sites is an important step in managing timber tree genetic diversity as it provides confidence that species specific management recommendations based on species reproductive traits can be applied across a species' range. Forest managers should take into account the interaction between reproductive traits and site characteristics, its consequences for maintaining forest genetic resources and how this might influence natural regeneration across species if management is to be sustainable.
    Matched MeSH terms: Trees/physiology
  18. Inoue Y, Ichie T, Kenzo T, Yoneyama A, Kumagai T, Nakashizuka T
    Tree Physiol, 2017 10 01;37(10):1301-1311.
    PMID: 28541561 DOI: 10.1093/treephys/tpx053
    Climate change exposes vegetation to unusual levels of drought, risking a decline in productivity and an increase in mortality. It still remains unclear how trees and forests respond to such unusual drought, particularly Southeast Asian tropical rain forests. To understand leaf ecophysiological responses of tropical rain forest trees to soil drying, a rainfall exclusion experiment was conducted on mature canopy trees of Dryobalanops aromatica Gaertn.f. (Dipterocarpaceae) for 4 months in an aseasonal tropical rain forest in Sarawak, Malaysia. The rainfall was intercepted by using a soft vinyl chloride sheet. We compared the three control and three treatment trees with respect to leaf water use at the top of the crown, including stomatal conductance (gsmax), photosynthesis (Amax), leaf water potential (predawn: Ψpre; midday: Ψmid), leaf water potential at turgor loss point (πtlp), osmotic potential at full turgor (π100) and a bulk modulus of elasticity (ε). Measurements were taken using tree-tower and canopy-crane systems. During the experiment, the treatment trees suffered drought stress without evidence of canopy dieback in comparison with the control trees; e.g., Ψpre and Ψmid decreased with soil drying. Minimum values of Ψmid in the treatment trees decreased during the experiment, and were lower than πtlp in the control trees. However, the treatment trees also decreased their πtlp by osmotic adjustment, and the values were lower than the minimum values of their Ψmid. In addition, the treatment trees maintained gs and Amax especially in the morning, though at midday, values decreased to half those of the control trees. Decreasing leaf water potential by osmotic adjustment to maintain gs and Amax under soil drying in treatment trees was considered to represent anisohydric behavior. These results suggest that D. aromatica may have high leaf adaptability to drought by regulating leaf water consumption and maintaining turgor pressure to improve its leaf water relations.
    Matched MeSH terms: Trees/physiology*
  19. Katayama A, Kume T, Komatsu H, Ohashi M, Matsumoto K, Ichihashi R, et al.
    Tree Physiol, 2014 May;34(5):503-12.
    PMID: 24876294 DOI: 10.1093/treephys/tpu041
    Difficult access to 40-m-tall emergent trees in tropical rainforests has resulted in a lack of data related to vertical variations in wood CO2 efflux, even though significant variations in wood CO2 efflux are an important source of errors when estimating whole-tree total wood CO2 efflux. This study aimed to clarify vertical variations in wood CO2 efflux for emergent trees and to document the impact of the variations on the whole-tree estimates of stem and branch CO2 efflux. First, we measured wood CO2 efflux and factors related to tree morphology and environment for seven live emergent trees of two dipterocarp species at four to seven heights of up to ∼ 40 m for each tree using ladders and a crane. No systematic tendencies in vertical variations were observed for all the trees. Wood CO2 efflux was not affected by stem and air temperature, stem diameter, stem height or stem growth. The ratios of wood CO2 efflux at the treetop to that at breast height were larger in emergent trees with relatively smaller diameters at breast height. Second, we compared whole-tree stem CO2 efflux estimates using vertical measurements with those based on solely breast height measurements. We found similar whole-tree stem CO2 efflux estimates regardless of the patterns of vertical variations in CO2 efflux because the surface area in the canopy, where wood CO2 efflux often differed from that at breast height, was very small compared with that at low stem heights, resulting in little effect of the vertical variations on the estimate. Additionally, whole-tree branch CO2 efflux estimates using measured wood CO2 efflux in the canopy were considerably different from those measured using only breast height measurements. Uncertainties in wood CO2 efflux in the canopy did not cause any bias in stem CO2 efflux scaling, but affected branch CO2 efflux.
    Matched MeSH terms: Trees/physiology*
  20. Takanashi S, Kosugi Y, Matsuo N, Tani M, Ohte N
    Tree Physiol, 2006 Dec;26(12):1565-78.
    PMID: 17169896
    Effects of heterogeneity in stomatal behavior on gas-exchange characteristics of leaves from four tree species growing in different climates, including temperate, tropical monsoon and tropical rain forest, were investigated by combining gas-exchange measurements and the pressure-infiltration method. Field observations indicated linear relationships between whole-leaf conductance and the ratio of infiltrated to non-infiltrated leaf area (open stomata area) in Dipterocarpus sublamellatus Foxw. and Neobalanocarpus heimii (King) Ashton in a tropical rain forest in Peninsular Malaysia, whereas the ratio of infiltrated to non-infiltrated area rapidly increased up to the whole-leaf conductance at which the entire leaf was infiltrated in Cinnamomum camphora Sieb. in a temperate evergreen forest in Japan and in Azadirachta indica Juss. in a tropical monsoon area in Thailand. These results strongly suggest small ranges in bell-shaped stomatal conductance distributions in C. camphora and A. indica and bimodal stomatal conductance distributions in D. sublamellatus and N. heimii. The values of normalized maximum carboxylation rate at 25 degrees C (V(cmax25)) derived from gas-exchange measurements were not constant, but decreased with decreasing whole-leaf conductance in D. sublamellatus and N. heimii. A gas-exchange model analysis revealed a linear relationship between whole-leaf conductance and the ratio of infiltrated to non-infiltrated leaf area for bimodal stomatal conductance distributions, whereas for bell-shaped distributions, the relationships were nonlinear. Midday depression of apparent V(cmax25) in these species was mainly caused by bimodal stomatal closure. The bimodal stomatal distribution model could also explain diurnal changes in photosynthetic assimilation and transpiration rates in these species.
    Matched MeSH terms: Trees/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links