Displaying publications 21 - 40 of 197 in total

Abstract:
Sort:
  1. Nget Hong Tan, Chon Seng Tan
    Toxicon, 1988;26(11):989-96.
    PMID: 3245058
    The toxic and biological activities of four samples of Trimeresurus purpureomaculatus venom were examined. The lethality, protein composition and biological activities of the four venom samples were similar. Three of the venom samples had LD50 (i.v.) values of 0.9 micrograms/g while the fourth had a lower LD50 (i.v.) of 0.45 micrograms/g. All four venom samples exhibited hemorrhagic, edema-inducing, anticoagulant and thrombin-like activities as well as the usual enzymes found in crotalid venoms. DEAE-Sephacel ion exchange chromatographic fractionation of the venom yielded 10 protein fractions. Only two fractions (fractions A and F) were lethal to mice; the major lethal fraction being fraction F. This fraction had an LD50 (i.v.) of 0.2 micrograms/g and exhibited hemorrhagic, edema-inducing and thrombin-like activity. It also exhibited phospholipase A, arginine ester hydrolase, arginine amidase, protease, 5'-nucleotidase, acetylcholinesterase and alkaline phosphomonoesterase activities. The lethal potency of fraction F is potentiated by fraction G, which exhibited anticoagulant activity as well as hemorrhagic, edema-inducing and enzymatic activities. Fractions F plus G account for almost 100% of the lethal potency of the venom.
    Matched MeSH terms: Crotalid Venoms/metabolism; Crotalid Venoms/pharmacology*
  2. Chaisakul J, Rusmili MR, Hodgson WC, Hatthachote P, Suwan K, Inchan A, et al.
    Toxins (Basel), 2017 03 29;9(4).
    PMID: 28353659 DOI: 10.3390/toxins9040122
    Cardiovascular effects (e.g., tachycardia, hypo- and/or hypertension) are often clinical outcomes of snake envenoming. Malayan krait (Bungarus candidus) envenoming has been reported to cause cardiovascular effects that may be related to abnormalities in parasympathetic activity. However, the exact mechanism for this effect has yet to be determined. In the present study, we investigated thein vivoandin vitrocardiovascular effects ofB. candidusvenoms from Southern (BC-S) and Northeastern (BC-NE) Thailand. SDS-PAGE analysis of venoms showed some differences in the protein profile of the venoms.B. candidusvenoms (50 µg/kg-100 µg/kg, i.v.) caused dose-dependent hypotension in anaesthetised rats. The highest dose caused sudden hypotension (phase I) followed by a return of mean arterial pressure to baseline levels and a decrease in heart rate with transient hypertension (phase II) prior to a small decrease in blood pressure (phase III). Prior administration of monovalent antivenom significantly attenuated the hypotension induced by venoms (100 µg/kg, i.v.). The sudden hypotensive effect of BC-NE venom was abolished by prior administration of hexamethonium (10 mg/kg, i.v.) or atropine (5 mg/kg, i.v.). BC-S and BC-NE venoms (0.1 µg/kg-100 µg/ml) induced concentration-dependent relaxation (EC50= 8 ± 1 and 13 ± 3 µg/mL, respectively) in endothelium-intact aorta. The concentration-response curves were markedly shifted to the right by pre-incubation with L-NAME (0.2 mM), or removal of the endothelium, suggesting that endothelium-derived nitric oxide (NO) is likely to be responsible for venom-induced aortic relaxation. Our data indicate that the cardiovascular effects caused byB. candidusvenoms may be due to a combination of vascular mediators (i.e., NO) and autonomic adaptation via nicotinic and muscarinic acetylcholine receptors.
    Matched MeSH terms: Elapid Venoms/toxicity*
  3. Tan NH, Ponnudurai G, Chung MC
    Toxicon, 1997 Jun;35(6):979-84.
    PMID: 9241791
    The proteolytic specificity of rhodostoxin, the major hemorrhagin from Calloselasma rhodostoma (Malayan pit viper) venom was investigated using oxidized B-chain of bovine insulin as substrate. Six peptide bonds were cleaved: Ser9-Hist10, His10-Leu11, Ala14-Leu15, Tyr16-Leu17, Gly20-Glu21 and Phe24-Phe25. Deglycosylated rhodostoxin, however, cleaved primarily at Arg22-Gly23.
    Matched MeSH terms: Crotalid Venoms/metabolism*
  4. Petrocelli I, Turillazzi S, Delfino G
    Arthropod Struct Dev, 2014 Sep;43(5):457-68.
    PMID: 24797151 DOI: 10.1016/j.asd.2014.04.007
    In the wasp venom apparatus, the convoluted gland is the tract of the thin secretory unit, i.e. filament, contained in the muscular reservoir. Previous transmission electron microscope investigation on Stenogastrinae disclosed that the free filaments consist of distal and proximal tracts, from/to the venom reservoir, characterized by class 3 and 2 gland patterns, respectively. This study aims to extend the ultrastructural analysis to the convoluted tract, in order to provide a thorough, subcellular representation of the venom gland in these Asian wasps. Our findings showed that the convoluted gland is a continuation of the proximal tract, with secretory cells provided with a peculiar apical invagination, the extracellular cavity, collecting their products. This compartment holds a simple end-apparatus lined by large and ramified microvilli that contribute to the processing of the secretory product. A comparison between previous and present findings reveals a noticeable regionalization of the stenogastrine venom filaments and suggests that the secretory product acquires its ultimate composition in the convoluted tract.
    Matched MeSH terms: Wasp Venoms/secretion
  5. Devaraj T
    PMID: 524151
    Bleeding following bites by the Malayan Pit Viper can either be local or systemic. Bleeding at the site of the bite is due to the local action of the venom as a vasculotoxin. Systemic bleeding occurs with severe poisoning and appears to be mainly dependent on platelet deficiency and the co-existing defibrination syndrome appears to play a minor role in the initiation of bleeding. Thus in the clinical situation non-clotting blood with no overt bleeding can continue up to weeks when specific antivenene is not given. Assessment of the severity of poisoning can easily be made at the bedside. Specific viper antivenene rapidly corrects the spontaneous bleeding and clotting defect of severe systemic poisoning but has no effect on local poisoning.
    Matched MeSH terms: Snake Venoms
  6. Chetty N, Du A, Hodgson WC, Winkel K, Fry BG
    Toxicon, 2004 Aug;44(2):193-200.
    PMID: 15246769
    We examined the neurotoxicity of the following sea snake venoms: Enhydrina schistosa (geographical variants from Weipa and Malaysia), Lapemis curtus (Weipa and Malaysia), Laticauda colubrina, Aipysurus laevis, Aipysurus fuscus and Aipysurus foliosquamatus. Venom from a terrestrial snake, Notechis scutatus (tiger snake), was used as a reference. All venoms (1 and 3 microg/ml) abolished indirect twitches of the chick biventer cervicis muscle and significantly inhibited responses to ACh (1 mM) and CCh (20 microM), but not KCl (40 mM), indicating the presence of post-synaptic toxins. Prior administration (10 min) of CSL sea snake antivenom (1 unit/ml) attenuated the twitch blockade produced by N. scutatus venom and all sea snake venoms (1 microg/ml). Prior administration (10 min) of CSL tiger snake antivenom (1 unit/ml) attenuated the twitch blockade of all venoms except those produced by E. schistosa (Malaysia and Weipa) and A. foliosquamatus. Administration of CSL sea snake antivenom (1 unit/ml) at t90 (i.e. time at which 90% inhibition of initial twitch height occurred) reversed the inhibition of twitches (20-50%) produced by the sea snake venoms (1 microg/ml) but not by N. scutatus venom (1 microg/ml). CSL tiger snake antivenom (1 unit/ml) administered at t90 produced only minor reversal (i.e. 15-25%) of the twitch blockade caused by L. curtus (Weipa), A. foliosquamatus, L. colubrina and A. laevis venoms (1 microg/ml). Differences in the rate of reversal of the neurotoxicity produced by the two geographical variants of E. schistosa venom, after addition of CSL sea snake antivenom, indicate possible differences in venom components. This study shows that sea snake venoms contain potent post-synaptic activity that, despite the significant genetic distances between the lineages, can be neutralised with CSL sea snake antivenom. However, the effects of CSL tiger snake antivenom are more variable.
    Matched MeSH terms: Elapid Venoms/antagonists & inhibitors*; Elapid Venoms/toxicity*
  7. Yap MK, Tan NH, Sim SM, Fung SY
    Toxicon, 2013 Jun;68:18-23.
    PMID: 23537711 DOI: 10.1016/j.toxicon.2013.02.017
    Existing protocols for antivenom treatment of snake envenomations are generally not well optimized due partly to inadequate knowledge of the toxicokinetics of venoms. The toxicokinetics of Naja sputatrix (Javan spitting cobra) venom was investigated following intravenous and intramuscular injections of the venom into rabbits using double-sandwich ELISA. The toxicokinetics of the venom injected intravenously fitted a two-compartment model. When the venom was injected intramuscularly, the serum concentration-time profile exhibited a more complex absorption and/or distribution pattern. Nevertheless, the terminal half-life, volume of distribution by area and systemic clearance of the venom injected intramuscularly were not significantly different (p > 0.05) from that of the venom injected intravenously. The systemic bioavailability of the venom antigens injected by intramuscular route was 41.7%. Our toxicokinetic finding is consistent with other reports, and may indicate that some cobra venom toxins have high affinity for the tissues at the site of injection. Our results suggest that the intramuscular route of administration doesn't significantly alter the toxicokinetics of N. sputatrix venom although it significantly reduces the systemic bioavailability of the venom.
    Matched MeSH terms: Elapid Venoms/pharmacokinetics*
  8. Lippmann JM, Fenner PJ, Winkel K, Gershwin LA
    J Travel Med, 2011 Jul-Aug;18(4):275-81.
    PMID: 21722240 DOI: 10.1111/j.1708-8305.2011.00531.x
    Jellyfish are a common cause of injury throughout the world, with fatalities and severe systemic events not uncommon after tropical stings. The internet is a recent innovation to gain information on real-time health issues of travel destinations, including Southeast Asia.
    Matched MeSH terms: Cnidarian Venoms/poisoning*
  9. Tan CH, Tan NH, Sim SM, Fung SY, Gnanathasan CA
    Acta Trop, 2012 Jun;122(3):267-75.
    PMID: 22322247 DOI: 10.1016/j.actatropica.2012.01.016
    Envenomation by hump-nosed pit viper (Hypnale hypnale, Hh) in Sri Lanka has caused significant morbidity and mortality, attributed to 35% of total venomous snakebites. In Southwestern India (Kerala), H. hypnale was increasingly identified as a dangerous and common source of envenomation, second to the Russell's viper but ahead of the cobra bites. Unfortunately, there is still no specific antivenom to date. This study aims to investigate the immunological properties of the venom and to assess the feasibility of specific Hh antivenom production as well as the development of a diagnostic assay. Hh venom elicited satisfactory titers of anti-Hh IgG in rabbits after 3rd immunization. The anti-Hh IgG, isolated with caprylic acid precipitation method, was effective in neutralizing the venom lethality (potency=48 LD(50) per ml IgG) as well as its procoagulant, hemorrhagic and necrotic effects, indicating the possibility to produce the specific antivenom using the common immunization regime. Cross-reactivity studies using indirect ELISA showed that anti-Hh IgG cross-reacted extensively with several Asiatic crotalid venoms, particularly that of Calloselasma rhodostoma (73.6%), presumably due to the presence of venom antigens common to both snakes. Levels of immunological cross-reactivity were vastly reduced with double-sandwich ELISA. Further work demonstrated that the assay was able to distinguish and quantify venoms of H. hypnale, Daboia russelii and Echis carinatus sinhaleyus (three common local viperid) used to spike human sera at various concentrations. The assay hence may be a useful investigating tool for diagnosing biting species and studying the time course profile of venom concentrations in blood.
    Matched MeSH terms: Crotalid Venoms/immunology*
  10. Tan CH, Tan NH, Sim SM, Fung SY, Gnanathasan CA
    Toxicon, 2015 Jan;93:164-70.
    PMID: 25451538 DOI: 10.1016/j.toxicon.2014.11.231
    The hump-nosed pit viper, Hypanle hypnale, contributes to snakebite mortality and morbidity in Sri Lanka. Studies showed that the venom is hemotoxic and nephrotoxic, with some biochemical and antigenic properties similar to the venom of Calloselasma rhodostoma (Malayan pit viper). To further characterize the complexity composition of the venom, we investigated the proteome of a pooled venom sample from >10 Sri Lankan H. hypnale with reverse-phase high performance liquid chromatography (rp-HPLC), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and peptide sequencing (tandem mass-spectrometry and/or N-terminal sequencing). The findings ascertained that two phospholipase A2 subtypes (E6-PLA2, W6-PLA2) dominate the toxin composition by 40.1%, followed by snake venom metalloproteases (36.9%), l-amino acid oxidase (11.9%), C-type lectins (5.5%), serine proteases (3.3%) and others (2.3%). The presence of the major toxins correlates with the venom's major pathogenic effects, indicating these to be the principal target toxins for antivenom neutralization. This study supports the previous finding of PLA2 dominance in the venom but diverges from the view that H. hypnale venom has low expression of large enzymatic toxins. The knowledge of the composition and abundance of toxins is essential to elucidate the pathophysiology of H. hypnale envenomation and to optimize antivenom formulation in the future.
    Matched MeSH terms: Crotalid Venoms/chemistry*
  11. Tan CH, Tan NH, Sim SM, Fung SY, Jayalakshmi P, Gnanathasan CA
    Toxicon, 2012 Dec 1;60(7):1259-62.
    PMID: 22975088 DOI: 10.1016/j.toxicon.2012.08.012
    Mice experimentally envenomed with Hypnale hypnale venom (1× and 1.5×LD₅₀) developed acute kidney injury (AKI) principally characterized by raised blood urea and creatinine. Prolonged blood clotting time and hemorrhage in lungs implied bleeding tendency. Pallor noted in most renal cortices was suggestive of renal ischemia secondary to consumptive coagulopathy. Intravenous infusion of Hemato polyvalent antivenom following experimental envenoming effectively prevented death and AKI in all mice, supporting its potential therapeutic use in envenoming cases.
    Matched MeSH terms: Crotalid Venoms/toxicity*
  12. Krishnan H, Gopinath SCB
    Int J Biol Macromol, 2023 Aug 30;247:125740.
    PMID: 37423441 DOI: 10.1016/j.ijbiomac.2023.125740
    Anticoagulant therapies are crucial in the management of surgical complications as well as the prophylaxis of thrombosis. Many studies are being conducted on the Habu snake-venom anticoagulant, FIX-binding protein (FIX-Bp), for its greater potency and strong affinity to FIX clotting factor. On the other hand, the capacity to promptly reverse such acute anticoagulation is equally important. Combining a reversible anticoagulant with FIX-Bp may be advantageous in maintaining the balance between adequate anticoagulation and repealing when necessary. In this study, authors integrated FIX-Bp and RNA aptamer-based anticoagulants into a single target, FIX clotting factor, in order to achieve a robust anticoagulant effect. An in-silico and electrochemical approach were used to investigate the combination of FIX-Bp and RNA aptamers as a bivalent anticoagulant and to verify the competing or predominant binding sites of each anticoagulant. The in-silico analysis discovered that both the venom- and aptamer-anticoagulant had a strong affinity for the FIX protein at the Gla-domain and EGF-1 domain by holding 9 conventional hydrogen bonds with the binding energy of -34.859 kcal/mol. The electrochemical technique verified that both anticoagulants had different binding sites. The impedance load upon RNA aptamer binding to FIX protein was 14 %, whereas the addition of FIX-Bp caused a significant impedance rise of 37 %. This indicates that the addition of aptamers prior to FIX-Bp is a promising strategy for the conception of a hybrid anticoagulant.
    Matched MeSH terms: Snake Venoms
  13. Lazarev VN, Polina NF, Shkarupeta MM, Kostrjukova ES, Vassilevski AA, Kozlov SA, et al.
    Antimicrob Agents Chemother, 2011 Nov;55(11):5367-9.
    PMID: 21876050 DOI: 10.1128/AAC.00449-11
    Spider venoms are vast natural pharmacopoeias selected by evolution. The venom of the ant spider Lachesana tarabaevi contains a wide variety of antimicrobial peptides. We tested six of them (latarcins 1, 2a, 3a, 4b, 5, and cytoinsectotoxin 1a) for their ability to suppress Chlamydia trachomatis infection. HEK293 cells were transfected with plasmid vectors harboring the genes of the selected peptides. Controlled expression of the transgenes led to a significant decrease of C. trachomatis viability inside the infected cells.
    Matched MeSH terms: Spider Venoms/metabolism*
  14. Kozlov SA, Lazarev VN, Kostryukova ES, Selezneva OV, Ospanova EA, Alexeev DG, et al.
    Sci Data, 2014;1:140023.
    PMID: 25977780 DOI: 10.1038/sdata.2014.23
    A comprehensive transcriptome analysis of an expressed sequence tag (EST) database of the spider Dolomedes fimbriatus venom glands using single-residue distribution analysis (SRDA) identified 7,169 unique sequences. Mature chains of 163 different toxin-like polypeptides were predicted on the basis of well-established methodology. The number of protein precursors of these polypeptides was appreciably numerous than the number of mature polypeptides. A total of 451 different polypeptide precursors, translated from 795 unique nucleotide sequences, were deduced. A homology search divided the 163 mature polypeptide sequences into 16 superfamilies and 19 singletons. The number of mature toxins in a superfamily ranged from 2 to 49, whereas the diversity of the original nucleotide sequences was greater (2-261 variants). We observed a predominance of inhibitor cysteine knot toxin-like polypeptides among the cysteine-containing structures in the analyzed transcriptome bank. Uncommon spatial folds were also found.
    Matched MeSH terms: Spider Venoms/genetics*; Spider Venoms/chemistry
  15. Haida Z, Nakasha JJ, Hakiman M
    Plants (Basel), 2020 Aug 14;9(8).
    PMID: 32823824 DOI: 10.3390/plants9081030
    Clinacanthus nutans, commonly known as Sabah snake grass, is one of the more important medicinal plants in Malaysia's herbal industry. C. nutans has gained the attention of medical practitioners due to its wide range of bioactive compounds responsible for various biological activities, such as anti-cancer, anti-venom and anti-viral activities. Due to its high pharmacological properties, the species has been overexploited to meet the demands of the pharmaceutical industry. The present study was conducted to establish a suitable in vitro culture procedure for the mass propagation of C. nutans. Murashige and Skoog (MS) basal medium, supplemented with different types of cytokinins, auxins, basal medium strength and sucrose concentrations, were tested. Based on the results, a full-strength MS basal medium supplemented with 12 µM 6-benzylaminopurine (BAP) and 30 g/L sucrose was recorded as the best outcome for all the parameters measured including the regeneration percentage, number of shoots, length of shoots, number of leaves and fresh weight of leaves. In the analysis of the phenolics content and antioxidant activities, tissue-cultured leaf extracts assayed at 100 °C exhibited the highest phenolic content and antioxidant activities. The propagation of C. nutans via a plant tissue culture technique was recorded to be able to produce high phenolic contents as well as exhibit high antioxidant activities.
    Matched MeSH terms: Venoms
  16. Geh SL, Rowan EG, Harvey AL
    Toxicon, 1992 Sep;30(9):1051-7.
    PMID: 1440642
    Four homologous single chain phospholipases A2 (Pa-1G, Pa-5, Pa-12C and Pa-15) were tested for neuromuscular effects on chick biventer cervicis and mouse hemidiaphragm nerve-muscle preparations. The four isozymes blocked directly elicited (mouse hemidiaphragm) and indirectly elicited (mouse and chick nerve-muscle preparations) twitch responses in concentrations of 1-30 micrograms/ml. The order of potency seen in both types of preparations was Pa-1G = Pa-5 greater than Pa-12C much greater than Pa-15. All four isozymes caused slow-onset, sustained contractures and reduction of muscle membrane potentials. In the chick preparation, responses to acetylcholine, carbachol and KCl were reduced by exposure to the toxins. It is concluded that the toxins act primarily postsynaptically to depress muscle contractility, perhaps by directly damaging muscle fibres. The order of potency agrees with their phospholipase A2 activity. Pa-1G is unusual because it is an acidic molecule, most toxic phospholipases being basic.
    Matched MeSH terms: Elapid Venoms/enzymology*; Elapid Venoms/pharmacology
  17. Hawgood BJ
    Toxicon, 1998 Mar;36(3):431-46.
    PMID: 9637363
    Alistair Reid was an outstanding clinician, epidemiologist and scientist. At the Penang General Hospital, Malaya, his careful observation of sea snake poisoning revealed that sea snake venoms were myotoxic in man leading to generalized rhabdomyolysis, and were not neurotoxic as observed in animals. In 1961, Reid founded and became the first Honorary Director of the Penang Institute of Snake and Venom Research. Effective treatment of sea snake poisoning required specific antivenom which was produced at the Commonwealth Serum Laboratories in Melbourne from Enhydrina schistosa venom supplied by the Institute. From the low frequency of envenoming following bites, Reid concluded that snakes on the defensive when biting man seldom injected much venom. He provided clinical guidelines to assess the degree of envenoming, and the correct dose of specific antivenom to be used in the treatment of snake bite in Malaya. Reid demonstrated that the non-clotting blood of patients bitten by the pit viper, Calloselasma rhodostoma [Ancistrodon rhodostoma] was due to venom-induced defibrination. From his clinical experience of these patients, Reid suggested that a defibrinating derivative of C. rhodostoma venom might have a useful role in the treatment of deep vein thrombosis. This led to Arvin (ancrod) being used clinically from 1968. After leaving Malaya in 1964, Alistair Reid joined the staff of the Liverpool School of Tropical Medicine, as Senior Lecturer. Enzyme-linked immunosorbent assay (ELISA) for detecting and quantifying snake venom and venom-antibody was developed at the Liverpool Venom Research Unit: this proved useful in the diagnosis of snake bite, in epidemiological studies of envenoming patterns, and in screening of antivenom potency. In 1977, Dr H. Alistair Reid became Head of the WHO Collaborative Centre for the Control of Antivenoms based at Liverpool.
    Matched MeSH terms: Elapid Venoms/history; Elapid Venoms/immunology
  18. Tan NH, Hj MN
    Toxicon, 1989;27(6):689-95.
    PMID: 2749765
    Some enzymatic activities and toxic properties of four samples of Ophiophagus hannah (king cobra) venom were investigated. There is little intraspecific variation in enzyme contents, protein composition and toxic properties of the venom. The venom does not exhibit hemolytic or edema-inducing activity but is characterized by an exceptionally high alkaline phosphomonoesterase activity. DEAE-Sephacel ion exchange chromatography and Sephadex G-75 gel filtration chromatography of the venom indicate that the major lethal toxins are the low mol.wt, non-enzymatic basic proteins. Venom fractions exhibiting high enzymatic activities apparently do not play an important role in the lethality in mice of Ophiophagus hannah venom.
    Matched MeSH terms: Elapid Venoms/analysis; Elapid Venoms/toxicity*
  19. Rusmili MR, Yee TT, Mustafa MR, Othman I, Hodgson WC
    Toxins (Basel), 2014 Mar;6(3):1036-48.
    PMID: 24625762 DOI: 10.3390/toxins6031036
    Bungarus candidus and Bungarus fasciatus are two species of krait found in Southeast Asia. Envenoming by these snakes is often characterized by neurotoxicity and, without treatment, causes considerable morbidity and mortality. In this study, the in vitro neurotoxicity of each species, and the effectiveness of two monovalent antivenoms and a polyvalent antivenom, against the neurotoxic effects of the venoms, were examined in a skeletal muscle preparation. Both venoms caused concentration-dependent inhibition of indirect twitches, and attenuated responses to exogenous nicotinic receptor agonists, in the chick biventer preparation, with B. candidus venom being more potent than B. fasciatus venom. SDS-PAGE and western blot analysis indicated different profiles between the venoms. Despite these differences, most proteins bands were recognized by all three antivenoms. Antivenom, added prior to the venoms, attenuated the neurotoxic effect of the venoms. Interestingly, the respective monovalent antivenoms did not neutralize the effects of the venom from the other Bungarus species indicating a relative absence of cross-neutralization. Addition of a high concentration of polyvalent antivenom, at the t90 time point after addition of venom, partially reversed the neurotoxicity of B. fasciatus venom but not B. candidus venom. The monovalent antivenoms had no significant effect when added at the t90 time point. This study showed that B. candidus and B. fasciatus venoms display marked in vitro neurotoxicity in the chick biventer preparation and administration of antivenoms at high dose is necessary to prevent or reverse neurotoxicity.
    Matched MeSH terms: Elapid Venoms/toxicity*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links