Displaying publications 21 - 29 of 29 in total

Abstract:
Sort:
  1. Takaoka H, Fukuda M, Otsuka Y, Aoki C, Uni S, Bain O
    Med Vet Entomol, 2012 Dec;26(4):372-8.
    PMID: 22827756 DOI: 10.1111/j.1365-2915.2012.01023.x
    Studies of blackfly vectors of Onchocerca dewittei japonica Uni, Bain & Takaoka (Spirurida: Onchocercidae), a parasite of wild boar implicated in the aetiology of zoonotic onchocerciasis in Japan, and six other zoonotic Onchocerca species of this country are reviewed. Molecular identification of infective larvae found in wild-caught female blackflies showed that Simulium bidentatum (Shiraki) (Diptera: Simuliidae) is a natural vector of O. dewittei japonica, and also Onchocerca sp. sensu Fukuda et al., another parasite of wild boar. Inoculation experiments demonstrated that Simulium arakawae Matsumura and four other Simulium species are putative vectors. Similarly, S. arakawae, S. bidentatum and Simulium oitanum (Shiraki) are putative vectors of Onchocerca eberhardi Uni & Bain and Onchocerca skrjabini Rukhlyadev, parasites of sika deer. Morphometric studies of infective larvae indicated that Onchocerca lienalis Stiles, a bovine species, is transmitted by S. arakawae, Simulium daisense (Takahasi) and Simulium kyushuense Takaoka, and that Onchocerca sp. sensu Takaoka & Bain, another bovine species, is transmitted by S. arakawae, S. bidentatum, S. daisense and S. oitanum. Prosimulium sp. (Diptera: Simuliidae) and Simulium japonicum Matsumura are suspected vectors of Onchocerca suzukii Yagi, Bain & Shoho and O. skrjabini [Twinnia japonensis Rubtsov (Diptera: Simuliidae) may also transmit the latter], parasites of Japanese serow, following detection of the parasites' DNA genes in wild-caught blackflies.
    Matched MeSH terms: Zoonoses/parasitology
  2. Fatih FA, Staines HM, Siner A, Ahmed MA, Woon LC, Pasini EM, et al.
    Malar J, 2013;12:425.
    PMID: 24245918 DOI: 10.1186/1475-2875-12-425
    Evidence suggests that Plasmodium knowlesi malaria in Sarawak, Malaysian Borneo remains zoonotic, meaning anti-malarial drug resistance is unlikely to have developed in the absence of drug selection pressure. Therefore, adequate response to available anti-malarial treatments is assumed.
    Matched MeSH terms: Zoonoses/parasitology
  3. Gamalo LE, Dimalibot J, Kadir KA, Singh B, Paller VG
    Malar J, 2019 Apr 24;18(1):147.
    PMID: 31014342 DOI: 10.1186/s12936-019-2780-4
    BACKGROUND: Macaca fascicularis (long-tailed macaque) is the most widespread species of macaque in Southeast Asia and the only species of monkey found naturally in the Philippines. The species is the natural host for the zoonotic malaria species, Plasmodium knowlesi and Plasmodium cynomolgi and for the potentially zoonotic species, Plasmodium inui. Moreover, other Plasmodium species such as Plasmodium coatneyi and Plasmodium fieldi are also natural parasites of M. fascicularis. The aims of this study were to identify and determine the prevalence of Plasmodium species infecting wild and captive long-tailed macaques from the Philippines.

    METHODS: A total of 95 blood samples from long-tailed macaques in the Philippines were collected from three locations; 30 were from captive macaques at the National Wildlife Rescue and Rehabilitation Center (NWRRC) in Luzon, 25 were from captive macaques at the Palawan Wildlife Rescue and Conservation Center (PWRCC) in Palawan and 40 were from wild macaques from Puerto Princesa Subterranean River National Park (PPSRNP) in Palawan. The Plasmodium spp. infecting the macaques were identified using nested PCR assays on DNA extracted from these blood samples.

    RESULTS: All 40 of the wild macaques from PPSRNP in Palawan and 5 of 25 captive macaques from PWRCC in Palawan were Plasmodium-positive; while none of the 30 captive macaques from the NWRRC in Luzon had any malaria parasites. Overall, P. inui was the most prevalent malaria parasite (44.2%), followed by P. fieldi (41.1%), P. cynomolgi (23.2%), P. coatneyi (21.1%), and P. knowlesi (19%). Mixed species infections were also observed in 39 of the 45 Plasmodium-positive macaques. There was a significant difference in the prevalence of P. knowlesi among the troops of wild macaques from PPSRNP.

    CONCLUSION: Wild long-tailed macaques from the island of Palawan, the Philippines are infected with P. knowlesi, P. inui, P. coatneyi, P. fieldi and P. cynomolgi. The prevalence of these Plasmodium spp. varied among the sites of collection and among troops of wild macaques at one site. The presence of these simian Plasmodium parasites, especially P. knowlesi and P. cynomolgi in the long-tailed macaques in Palawan presents risks for zoonotic transmission in the area.

    Matched MeSH terms: Zoonoses/parasitology
  4. Davidson G, Chua TH, Cook A, Speldewinde P, Weinstein P
    Malar J, 2019 Mar 08;18(1):66.
    PMID: 30849978 DOI: 10.1186/s12936-019-2693-2
    Plasmodium knowlesi is a zoonotic malaria parasite normally residing in long-tailed and pig-tailed macaques (Macaca fascicularis and Macaca nemestrina, respectively) found throughout Southeast Asia. Recently, knowlesi malaria has become the predominant malaria affecting humans in Malaysian Borneo, being responsible for approximately 70% of reported cases. Largely as a result of anthropogenic land use changes in Borneo, vectors which transmit the parasite, along with macaque hosts, are both now frequently found in disturbed forest habitats, or at the forest fringes, thus having more frequent contact with humans. Having access to human hosts provides the parasite with the opportunity to further its adaption to the human immune system. The ecological drivers of the transmission and spread of P. knowlesi are operating over many different spatial (and, therefore, temporal) scales, from the molecular to the continental. Strategies to prevent and manage zoonoses, such as P. knowlesi malaria require interdisciplinary research exploring the impact of land use change and biodiversity loss on the evolving relationship between parasite, reservoir hosts, vectors, and humans over multiple spatial scales.
    Matched MeSH terms: Zoonoses/parasitology
  5. Singh B, Kim Sung L, Matusop A, Radhakrishnan A, Shamsul SS, Cox-Singh J, et al.
    Lancet, 2004 Mar 27;363(9414):1017-24.
    PMID: 15051281
    About a fifth of malaria cases in 1999 for the Kapit division of Malaysian Borneo had routinely been identified by microscopy as Plasmodium malariae, although these infections appeared atypical and a nested PCR assay failed to identify P malariae DNA. We aimed to investigate whether such infections could be attributable to a variant form of P malariae or a newly emergent Plasmodium species.
    Matched MeSH terms: Zoonoses/parasitology
  6. Le TH, Anh NT, Nguyen KT, Nguyen NT, Thuy do TT, Gasser RB
    Infect Genet Evol, 2016 Jan;37:94-8.
    PMID: 26584512 DOI: 10.1016/j.meegid.2015.11.009
    Toxocara canis of canids is a parasitic nematode (ascaridoid) that infects humans and other hosts, causing different forms of toxocariasis. This species of Toxocara appears to be the most important cause of human disease, likely followed by Toxocara cati from felids. Although some studies from Malaysia and China have shown that cats can harbor another congener, T. malaysiensis, no information is available about this parasite for other countries. Moreover, the zoonotic potential of this parasite is unknown at this point. In the present study, we conducted the first investigation of domestic dogs and cats for Toxocara in Vietnam using molecular tools. Toxocara malaysiensis was identified as a common ascaridoid of domestic cats (in the absence of T. cati), and T. canis was commonly found in dogs. Together with findings from previous studies, the present results emphasize the need to explore the significance and zoonotic potential of T. malaysiensis in Vietnam and other countries where this parasite is endemic and prevalent in cats.
    Matched MeSH terms: Zoonoses/parasitology
  7. Lim YA, Lai MM, Mahdy MA, Mat Naim HR, Smith HV
    Environ Res, 2009 Oct;109(7):857-9.
    PMID: 19664767 DOI: 10.1016/j.envres.2009.07.007
    We used a combined microscopy-molecular approach to determine the occurrence and identities of waterborne Giardia sp. cysts isolated from 18 separate, 10l grab samples collected from a Malaysian zoo. Microscopy revealed that 17 of 18 samples were Giardia cyst positive with concentrations ranging from 1 to 120 cysts/l. Nine (52.9%) of the 17 cyst positive samples produced amplicons of which 7 (77.8%) could be sequenced. Giardia duodenalis assemblage A (6 of 7) and assemblage B (1 of 7), both infectious to humans, were identified at all sampling sites at the zoo. The presence of human infectious cysts raises public health issues, and their occurrence, abundance and sources should be investigated further. In this zoo setting, our data highlight the importance of incorporating environmental sampling (monitoring) in addition to routine faecal examinations to determine veterinary and public health risks, and water monitoring should be considered for inclusion as a separate element in hazard analysis, as it often has a historical (accumulative) connotation.
    Matched MeSH terms: Zoonoses/parasitology*
  8. Kosaisavee V, Suwanarusk R, Chua ACY, Kyle DE, Malleret B, Zhang R, et al.
    Blood, 2017 09 14;130(11):1357-1363.
    PMID: 28698207 DOI: 10.1182/blood-2017-02-764787
    Two malaria parasites of Southeast Asian macaques, Plasmodium knowlesi and P cynomolgi, can infect humans experimentally. In Malaysia, where both species are common, zoonotic knowlesi malaria has recently become dominant, and cases are recorded throughout the region. By contrast, to date, only a single case of naturally acquired P cynomolgi has been found in humans. In this study, we show that whereas P cynomolgi merozoites invade monkey red blood cells indiscriminately in vitro, in humans, they are restricted to reticulocytes expressing both transferrin receptor 1 (Trf1 or CD71) and the Duffy antigen/chemokine receptor (DARC or CD234). This likely contributes to the paucity of detectable zoonotic cynomolgi malaria. We further describe postinvasion morphologic and rheologic alterations in P cynomolgi-infected human reticulocytes that are strikingly similar to those observed for P vivax These observations stress the value of P cynomolgi as a model in the development of blood stage vaccines against vivax malaria.
    Matched MeSH terms: Zoonoses/parasitology*
  9. Antinori S, Galimberti L, Milazzo L, Corbellino M
    Acta Trop, 2013 Feb;125(2):191-201.
    PMID: 23088834 DOI: 10.1016/j.actatropica.2012.10.008
    Plasmodium knowlesi was initially identified in the 30s as a natural Plasmodium of Macaca fascicularis monkey also capable of experimentally infecting humans. It gained a relative notoriety in the mid-30s as an alternative to Plasmodium vivax in the treatment of the general paralysis of the insane (neurosyphilis). In 1965 the first natural human infection was described in a US military surveyor coming back from the Pahang jungle of the Malaysian peninsula. P. knowlesi was again brought to the attention of the medical community when in 2004, Balbir Singh and his co-workers reported that about 58% of malaria cases observed in the Kapit district of the Malaysian Borneo were actually caused by P. knowlesi. In the following years several reports showed that P. knowlesi is much more widespread than initially thought with cases reported across Southeast Asia. This infection should also be considered in the differential diagnosis of any febrile travellers coming back from a recent travel to forested areas of Southeast Asia. P. knowlesi can cause severe malaria with a rate of 6-9% and with a case fatality rate of 3%. Respiratory distress, acute renal failure, shock and hyperbilirubinemia are the most frequently observed complications of severe P. knowlesi malaria. Chloroquine is considered the treatment of choice of uncomplicated malaria caused by P. knowlesi.
    Matched MeSH terms: Zoonoses/parasitology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links