Displaying publications 21 - 30 of 30 in total

Abstract:
Sort:
  1. Fu C, Deng S, Koneski I, Awad MM, Akram Z, Matinlinna J, et al.
    J Mech Behav Biomed Mater, 2020 12;112:104082.
    PMID: 32979607 DOI: 10.1016/j.jmbbm.2020.104082
    OBJECTIVE: To investigate the effect of blue light photoactivated riboflavin modified universal adhesives on dentin collagen biodegradation resistance, dentin apparent elastic modulus, and resin-dentin bond strength with interfacial morphology.

    METHODS: Dentin slabs were treated with 0.1% riboflavin-5-phosphate modified (powder added slowly while shaking and then sonicated to enhance the dispersion process) Universal Adhesive Scotch Bond and Zipbond™ along with control (non-modified) and experimental adhesives, photoactivated with blue light for 20s. Hydroxyproline (HYP) release was assessed after 1-week storage. Elastic-modulus testing was evaluated using universal testing machine at 24 h. Resin-dentin interfacial morphology was assessed with scanning electron-microscope, after 6-month storage. 0.1% rhodamine dye was added into each adhesive and analyzed using CLSM. Detection of free amino groups was carried out using ninhydrin and considered directly proportional to optical absorbance. Collagen molecular confirmation was determined using spectropolarimeter to evaluate and assess CD spectra. For molecular docking studies with riboflavin (PDB ID file), the binding pocket was selected with larger SiteScore and DScore using Schrodinger PB software. After curing, Raman shifts in Amide regions were obtained at 8 μm levels. Data were analyzed using Two-way analysis of variance (ANOVA, p ≤ 0.05) and Tukey-Kramer multiple comparison post hoc tests.

    RESULTS: At baseline, bond strength reduced significantly (p ≤ 0.05) in control specimens. However, at 6 months' storage, UVA Zipbond™ had significantly higher μTBS. Resin was able to diffuse through the porous demineralized dentin creating adequate hybrid layers in both 0.1%RF modified adhesives in CLSM images. In riboflavin groups, hybrid layer and resin tags were more pronounced. The circular dichroism spectrum showed negative peaks for riboflavin adhesive specimens. Best fitted poses adopted by riboflavin compound are docked with MMP-2 and -9 proteases. Amide bands and CH2 peaks followed the trend of being lowest for control UA Scotch bond adhesive specimens and increasing in Amides, proline, and CH2 intensities in 0.1%RF modified adhesive specimens. All 0.1%RF application groups showed statistically significant (p 

    Matched MeSH terms: Dental Bonding*
  2. Daood U, Omar H, Qasim S, Nogueira LP, Pichika MR, Mak KK, et al.
    J Mech Behav Biomed Mater, 2020 10;110:103927.
    PMID: 32957222 DOI: 10.1016/j.jmbbm.2020.103927
    OBJECTIVE: Here we describe a novel formulation, based on quaternary ammonium (QA) and riboflavin (RF), which combines antimicrobial activities and protease inhibitory properties with collagen crosslinking without interference to bonding capabilities, was investigated.

    METHODS: Experimental adhesives modified with different fractions of dioctadecyldimethyl ammonium bromide quaternary ammonium and riboflavin (QARF) were formulated. Dentine specimens were bonded to resincomposites with control or the experimental adhesives to be evaluated for bond strength, interfacial morphology, micro-Raman analysis, nano-CT and nano-leakage expression. In addition, the antibacterial and biocompatibilities of the experimental adhesives were investigated. The endogenous proteases activities and their molecular binding-sites were studied.

    RESULTS: Modifying the experimental adhesives with QARF did not adversely affect micro-tensile bond strength or the degree of conversion along with the demonstration of anti-proteases and antibacterial abilities with acceptable biocompatibilities. In general, all experimental adhesives demonstrated favourable bond strength with increased and improved values in 1% QARF adhesive at 24 h (39.2 ± 3.0 MPa) and following thermocycling (34.8 ± 4.3 MPa).

    SIGNIFICANCE: It is possible to conclude that the use of QARF with defined concentration can maintain bond strength values when an appropriate protocol is used and have contributed in ensuring a significant decrease in microbial growth of biofilms. Incorporation of 1% QARF in the experimental adhesive lead to simultaneous antimicrobial and anti-proteolytic effects with low cytotoxic effects, acceptable bond strength and interfacial morphology.

    Matched MeSH terms: Dental Bonding*
  3. Naji GA, Omar RA, Yahya R
    J Mech Behav Biomed Mater, 2017 03;67:135-143.
    PMID: 28006713 DOI: 10.1016/j.jmbbm.2016.12.007
    In all-ceramic systems, a high incidence of veneer chip-off has been reported in clinical studies. Coefficient of thermal expansion (CTE) behaviour is one of the factors that may increase residual stress in the interface and influence the veneer/core bond strength. Therefore, this study aimed to evaluate the effect of sodalite zeolite-infiltration on the CTE behaviour and bond strength of different all-ceramic prostheses. The case-study groups were synthesized sodalite zeolite-infiltrated alumina (IA-SOD) and synthesized sodalite zeolite-infiltrated zirconia-toughened alumina (ZTA) (IZ-SOD), while the control groups were glass-infiltrated alumina (IA-glass) and glass-infiltrated ZTA (IZ-glass). Forty cylindrical-shaped samples measuring 5 mm in diameter and 10 mm in height were tested for CTE using a thermo-mechanical analyser machine, and forty disc-shaped ceramic samples measuring 12 mm in diameter and 1.2 ± 0.2 mm in thickness were prepared using specially designed stainless steel split mould and veneered by cylinder-shaped (2 mm high × 2 mm diameter) low-fusing porcelain (Vita VM7). The veneer/core samples were sintered and tested for shear bond strength using a high precision universal testing machine. Scanning electron microscope, stereo microscope, atomic force microscope, and energy-dispersive X-ray spectroscopy were used to investigate the structural characteristics of samples at the fracture surface. The collected data were analyzed with a one-way ANOVA and Tukey HSD test (α=.05). IZ-SOD revealed highest CTE and shear bond strength values, while the IA-glass revealed the lowest values than the other groups. There was no significant difference in CTE and bond strength among IZ-SOD, IA-SOD and IZ-glass samples (p>0.05). The experimental SOD zeolite-infiltrated samples revealed higher CTE mismatch and bond strength along with a more favourable mode of failure than did the commercial glass-infiltrated samples. Sandblast technique is considered as effective conditioning procedure for enhancing the surface roughness of SOD zeolite-infiltrated frameworks which subsequently improving the bond strength.
    Matched MeSH terms: Dental Bonding*
  4. Daood U, Fawzy A
    J Mech Behav Biomed Mater, 2023 Apr;140:105737.
    PMID: 36827934 DOI: 10.1016/j.jmbbm.2023.105737
    The aim is to evaluate the development of an experimental multi-mode/Universal resin-based dentin adhesive modified with synthetic Mg2+ doped hydroxyapatite crystals (HAp) having self-remineralization and antibiofilm properties. HAp doped with Mg2+ was prepared by the precipitation method. Experimental adhesives were subjected to degree of conversion and X-ray diffraction test for size and crystal structure. Bond strength was tested, and electron microscopy (SEM/TEM) imaging of resin-dentin interface was done along with nanoleakage, nanoindentation, confocal and Raman analyses. S. mutans was analysed using CLSM images against modified adhesive specimens. Nucleating abilities within the resin-dentin specimens are determined by measuring Ca2+. Alkaline phosphatase, Runx2, and Ocn transcripts are amplified using quantitative polymerase chain reaction (q-PCR). A calcium assay is performed to quantify level of mineralisation. When compared to control adhesives, the 0.5% Hap/Mg2+ containing experimental dentin adhesive demonstrated improved interaction with dentin. The preservation of uniform intact hybrid layer with the absence of nanoleakage indicated dentin bond integrity with 0.5% HAP/Mg2+ modified adhesive. Self-remineralization and antibiofilm potentials are supported.
    Matched MeSH terms: Dental Bonding*
  5. Akram Z, Daood U, Aati S, Ngo H, Fawzy AS
    Mater Sci Eng C Mater Biol Appl, 2021 Mar;122:111894.
    PMID: 33641897 DOI: 10.1016/j.msec.2021.111894
    We formulated a pH-sensitive chlorhexidine-loaded mesoporous silica nanoparticles (MSN) modified with poly-(lactic-co-glycolic acid) (CHX-loaded/MSN-PLGA) and incorporated into experimental resin-based dentin adhesives at 5 and 10 wt%. Nanocarriers were characterized in terms of morphology, physicochemical features, spectral analyses, drug-release kinetics at varying pH and its effect on dentin-bound proteases was investigated. The modified dentin adhesives were characterized for cytotoxicity, antimicrobial activity, degree of conversion (DC) along with CHX release, micro-tensile bond strength (μTBS) and nano-leakage expression were studied at different pH values and storage time. CHX-loaded/MSN-PLGA nanocarriers exhibited a significant pH-dependent drug release behavior than CHX-loaded/MSN nanocarriers without PLGA modification. The highest percentage of CHX release was seen with 10 wt% CHX-loaded/MSN-PLGA doped adhesive at a pH of 5.0. CHX-loaded/MSN-PLGA modified adhesives exhibited more profound antibiofilm characteristics against S. mutans and more sustained CHX-release which was pH dependent. After 6 months in artificial saliva at varying pH, the 5 wt% CHX-loaded/MSN-PLGA doped adhesive showed excellent bonding under SEM/TEM, higher μTBS, and least nano-leakage expression. The pH-sensitive CHX-loaded/MSN-PLGA could be of crucial advantage for resin-dentin bonding applications especially in reduced pH microenvironment resulting from biofilm formation; and the activation of dentin-bound proteases as a consequence of acid etching and acidic content of bonding resin monomers.
    Matched MeSH terms: Dental Bonding*
  6. Caglar I, Ates SM, Boztoprak Y, Aslan YU, Duymus ZY
    Niger J Clin Pract, 2018 Aug;21(8):1000-1007.
    PMID: 30074001 DOI: 10.4103/njcp.njcp_300_17
    Objective: The aim of this study was to investigate the different surface treatments on the bond strength of self-adhesive resin cement to high-strength ceramic.

    Materials and Methods: Ninety aluminum oxide ceramic (Turkom-Ceramic Sdn. Bhd., Kuala Lumpur, Malaysia) specimens were produced and divided into nine groups to receive the following surface treatments: control group, no treatment (Group C), sandblasting (Group B), silica coating (Group S), erbium: yttrium-aluminum-garnet (Er:YAG) laser irradiation at 150 mJ 10 Hz (Group L1), Er:YAG laser irradiation at 300 mJ 10 Hz (Group L2), sandblasting + L1 (Group BL1), sandblasting + L2 (Group BL2), silica coating + L1 (Group SL1), and silica coating + L2 (Group SL2). After surface treatments, surface roughness (SR) values were measured and surface topography was evaluated. Resin cement was applied on the specimen surface, and shear bond strength (SBS) tests were performed. Data were statistically analyzed using one-way ANOVA and Tukey's multiple comparisons at a significance level of P < 0.05.

    Results: Group S, SL1, and SL2 showed significantly increased SR values compared to the control group (P < 0.05); therefore, no significant differences were found among the SR values of Groups B, BL1, BL2, L1, and L2 and the control group (P > 0.05). Group S showed the highest SBS values, whereas the control group showed the lowest SBS values.

    Conclusion: Silica coating is the most effective method for resin bonding of high strength ceramic, but Er:YAG laser application decreased the effectiveness.

    Matched MeSH terms: Dental Bonding/methods*
  7. Mustafa AA, Matinlinna JP, Saidin S, Kadir MR
    J Prosthet Dent, 2014 Dec;112(6):1498-506.
    PMID: 24993375 DOI: 10.1016/j.prosdent.2014.05.011
    STATEMENT OF PROBLEM: The inconsistency of dentin bonding affects retention and microleakage.

    PURPOSE: The purpose of this laboratory and finite element analysis study was to investigate the effects on the formation of a hybrid layer of an experimental silane coupling agent containing primer solutions composed of different percentages of hydroxyethyl methacrylate.

    MATERIAL AND METHODS: A total of 125 sound human premolars were restored in vitro. Simple class I cavities were formed on each tooth, followed by the application of different compositions of experimental silane primers (0%, 5%, 25%, and 50% of hydroxyethyl methacrylate), bonding agents, and dental composite resins. Bond strength tests and scanning electron microscopy analyses were performed. The laboratory experimental results were validated with finite element analysis to determine the pattern of stress distribution. Simulations were conducted by placing the restorative composite resin in a premolar tooth by imitating simple class I cavities. The laboratory and finite element analysis data were significantly different from each other, as determined by 1-way ANOVA. A post hoc analysis was conducted on the bond strength data to further clarify the effects of silane primers.

    RESULTS: The strongest bond of hybrid layer (16.96 MPa) was found in the primer with 25% hydroxyethyl methacrylate, suggesting a barely visible hybrid layer barrier. The control specimens without the application of the primer and the primer specimens with no hydroxyethyl methacrylate exhibited the lowest strength values (8.30 MPa and 11.78 MPa) with intermittent and low visibility of the hybrid layer. These results were supported by finite element analysis that suggested an evenly distributed stress on the model with 25% hydroxyethyl methacrylate.

    CONCLUSIONS: Different compositions of experimental silane primers affected the formation of the hybrid layer and its resulting bond strength.

    Matched MeSH terms: Dental Bonding*
  8. Sulong MZ, Setchell DJ
    J Prosthet Dent, 1991 Dec;66(6):743-7.
    PMID: 1805022
    Adhesive bond strength studies for the tray adhesive of an addition vinyl polysiloxane (President) impression material were conducted with an acrylic resin, chromium-plated brass, and plastic trays. Tensile and shear stress studies were performed on the Instron Universal testing machine. Acrylic resin specimens roughened with 80-grit silicon carbide paper exhibited appreciably higher bond strengths compared with different types of tray material and methods of surface preparation.
    Matched MeSH terms: Dental Bonding
  9. Tapsir Z, Aly Ahmed HM, Luddin N, Husein A
    J Contemp Dent Pract, 2013 Jan 1;14(1):47-50.
    PMID: 23579892
    To evaluate and compare the microleakage of various restorative materials used as coronal barriers between endodontic appointments.
    Matched MeSH terms: Dental Bonding*
  10. Razak AA, Abu-Hassan MI, Al-Makramani BM, Al-Sanabani FA, Al-Shami IZ, Almansour HM
    J Contemp Dent Pract, 2016 Nov 01;17(11):920-925.
    PMID: 27965501
    AIM: The aim of this study was to evaluate the effect of surface treatments on shear bond strength (SBS) of Turkom-Cera (Turkom-Ceramic (M) Sdn. Bhd., Puchong, Malaysia) all-ceramic material cemented with resin cement Panavia-F (Kuraray Medical Inc., Okayama, Japan).

    MATERIALS AND METHODS: Forty Turkom-Cera ceramic disks (10 mm × 3 mm) were prepared and randomly divided into four groups. The disks were wet ground to 1000-grit and subjected to four surface treatments: (1) No treatment (Control), (2) sandblasting, (3) silane application, and (4) sandblasting + silane. The four groups of 10 specimens each were bonded with Panavia-F resin cement according to manufacturer's recommendations. The SBS was determined using the universal testing machine (Instron) at 0.5 mm/min crosshead speed. Failure modes were recorded and a qualitative micromorphologic examination of different surface treatments was performed. The data were analyzed using the one-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests.

    RESULTS: The SBS of the control, sandblasting, silane, and sandblasting + silane groups were: 10.8 ± 1.5, 16.4 ± 3.4, 16.2 ± 2.5, and 19.1 ± 2.4 MPa respectively. According to the Tukey HSD test, only the mean SBS of the control group was significantly different from the other three groups. There was no significant difference between sandblasting, silane, and sandblasting + silane groups.

    CONCLUSION: In this study, the three surface treatments used improved the bond strength of resin cement to Turkom-Cera disks.

    CLINICAL SIGNIFICANCE: The surface treatments used in this study appeared to be suitable methods for the cementation of glass infiltrated all-ceramic restorations.

    Matched MeSH terms: Dental Bonding*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links