Displaying publications 21 - 27 of 27 in total

Abstract:
Sort:
  1. Hooi YT, Ong KC, Tan SH, Perera D, Wong KT
    Lab Invest, 2020 Sep;100(9):1262-1275.
    PMID: 32601355 DOI: 10.1038/s41374-020-0456-x
    Coxsackievirus A16 (CV-A16) is one of the major causes of mild and self-limiting hand-foot-and-mouth disease (HFMD) in young children, which may occasionally leads to serious neurological complications. In this study, we had developed a novel, consistent, orally infected CV-A16 HFMD hamster model with encephalomyelitis. Four groups of 7-day-old hamsters in a kinetic study were orally infected with mouse-adapted CV-A16 strains and sacrificed at 1-4 days post infection (dpi), respectively. Tissues were studied by light microscopy, immunohistochemistry to detect viral antigens, in situ hybridization to detect viral RNA, and by viral titration. In a separate transmission experiment, orally infected index hamsters were housed together with contact hamsters to investigate oral and fecal viral shedding by virus culture and reverse transcription polymerase chain reaction (RT-PCR). At severe infection/death endpoints, index and contact hamster infection were also histopathologically analyzed. In the kinetic study, infected hamsters developed signs of infection at 4 dpi. Viral antigens/RNA were localized to brainstem (medulla/pons; reticular formation and motor trigeminal nucleus) and spinal cord anterior horn neurons, oral squamous epithelia and epidermis from 3 to 4 dpi. Salivary and lacrimal glands, myocardium, brown adipose tissue, intestinal smooth muscle, and skeletal muscle infection was also demonstrated. Viremia at 1 dpi and increasing viral titers in various tissues were observed from 2 dpi. In the transmission study, all contact hamsters developed disease 3-5 days later than index hamsters, but demonstrated similar histopathological findings at endpoint. Viral culture and RT-PCR positive oral washes and feces confirmed viral shedding. Our hamster model, orally infected by the natural route for human infection, confirmed CV-A16 neurotropism and demonstrated squamous epitheliotropism reminiscent of HFMD, attributes not found in other animal models. It should be useful to investigate neuropathogenesis, model person-to-person transmission, and for testing antiviral drugs and vaccines.
    Matched MeSH terms: Enterovirus A, Human/genetics
  2. Van Tu P, Thao NTT, Perera D, Truong KH, Tien NTK, Thuong TC, et al.
    Emerg Infect Dis, 2007 Nov;13(11):1733-41.
    PMID: 18217559 DOI: 10.3201/eid1311.070632
    During 2005, 764 children were brought to a large children's hospital in Ho Chi Minh City, Vietnam, with a diagnosis of hand, foot, and mouth disease. All enrolled children had specimens (vesicle fluid, stool, throat swab) collected for enterovirus isolation by cell culture. An enterovirus was isolated from 411 (53.8%) of the specimens: 173 (42.1%) isolates were identified as human enterovirus 71 (HEV71) and 214 (52.1%) as coxsackievirus A16. Of the identified HEV71 infections, 51 (29.5%) were complicated by acute neurologic disease and 3 (1.7%) were fatal. HEV71 was isolated throughout the year, with a period of higher prevalence in October-November. Phylogenetic analysis of 23 HEV71 isolates showed that during the first half of 2005, viruses belonging to 3 subgenogroups, C1, C4, and a previously undescribed subgenogroup, C5, cocirculated in southern Vietnam. In the second half of the year, viruses belonging to subgenogroup C5 predominated during a period of higher HEV71 activity.
    Matched MeSH terms: Enterovirus A, Human/genetics
  3. Wu WH, Kuo TC, Lin YT, Huang SW, Liu HF, Wang J, et al.
    PLoS One, 2013;8(12):e83711.
    PMID: 24391812 DOI: 10.1371/journal.pone.0083711
    Enterovirus 71 (EV71), a causative agent of hand, foot, and mouth disease can be classified into three genotypes and many subtypes. The objectives of this study were to conduct a molecular epidemiological study of EV71 in the central region of Taiwan from 2002-2012 and to test the hypothesis that whether the alternative appearance of different EV71 subtypes in Taiwan is due to transmission from neighboring countries or from re-emergence of pre-existing local strains. We selected 174 EV71 isolates and used reverse transcription-polymerase chain reaction to amplify their VP1 region for DNA sequencing. Phylogenetic analyses were conducted using Neighbor-Joining, Maximum Likelihood and Bayesian methods. We found that the major subtypes of EV71 in Taiwan were B4 for 2002 epidemic, C4 for 2004-2005 epidemic, B5 for 2008-2009 epidemic, C4 for 2010 epidemic and B5 for 2011-2012 epidemic. Phylogenetic analysis demonstrated that the 2002 and 2008 epidemics were associated with EV71 from Malaysia and Singapore; while both 2010 and 2011-2012 epidemics originated from different regions of mainland China including Shanghai, Henan, Xiamen and Gong-Dong. Furthermore, minor strains have been identified in each epidemic and some of them were correlated with the subsequent outbreaks. Therefore, the EV71 infection in Taiwan may originate from pre-existing minor strains or from other regions in Asia including mainland China. In addition, 101 EV71 isolates were selected for the detection of new recombinant strains using the nucleotide sequences spanning the VP1-2A-2B region. No new recombinant strain was found. Analysis of clinical manifestations showed that patients infected with C4 had significantly higher rates of pharyngeal vesicles or ulcers than patients infected with B5. This is the first study demonstrating that different EV 71 genotypes may have different clinical manifestations and the association of EV71 infections between Taiwan and mainland China.
    Matched MeSH terms: Enterovirus A, Human/genetics
  4. Tan CW, Chan YF, Sim KM, Tan EL, Poh CL
    PLoS One, 2012;7(5):e34589.
    PMID: 22563456 DOI: 10.1371/journal.pone.0034589
    Enterovirus 71 (EV-71) is the main causative agent of hand, foot and mouth disease (HFMD). In recent years, EV-71 infections were reported to cause high fatalities and severe neurological complications in Asia. Currently, no effective antiviral or vaccine is available to treat or prevent EV-71 infection. In this study, we have discovered a synthetic peptide which could be developed as a potential antiviral for inhibition of EV-71. Ninety five synthetic peptides (15-mers) overlapping the entire EV-71 capsid protein, VP1, were chemically synthesized and tested for antiviral properties against EV-71 in human Rhabdomyosarcoma (RD) cells. One peptide, SP40, was found to significantly reduce cytopathic effects of all representative EV-71 strains from genotypes A, B and C tested, with IC(50) values ranging from 6-9.3 µM in RD cells. The in vitro inhibitory effect of SP40 exhibited a dose dependent concentration corresponding to a decrease in infectious viral particles, total viral RNA and the levels of VP1 protein. The antiviral activity of SP40 peptide was not restricted to a specific cell line as inhibition of EV-71 was observed in RD, HeLa, HT-29 and Vero cells. Besides inhibition of EV-71, it also had antiviral activities against CV-A16 and poliovirus type 1 in cell culture. Mechanism of action studies suggested that the SP40 peptide was not virucidal but was able to block viral attachment to the RD cells. Substitutions of arginine and lysine residues with alanine in the SP40 peptide at positions R3A, R4A, K5A and R13A were found to significantly decrease antiviral activities, implying the importance of positively charged amino acids for the antiviral activities. The data demonstrated the potential and feasibility of SP40 as a broad spectrum antiviral agent against EV-71.
    Matched MeSH terms: Enterovirus A, Human/genetics
  5. Somasundaram B, Chang C, Fan YY, Lim PY, Cardosa J, Lua L
    Methods, 2016 Feb 15;95:38-45.
    PMID: 26410190 DOI: 10.1016/j.ymeth.2015.09.023
    Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16) are two viruses commonly responsible for hand, foot and mouth disease (HFMD) in children. The lack of prophylactic or therapeutic measures against HFMD is a major public health concern. Insect cell-based EV71 and CVA16 virus-like particles (VLPs) are promising vaccine candidates against HFMD and are currently under development. In this paper, the influence of insect cell line, incubation temperature, and serial passaging effect and stability of budded virus (BV) stocks on EV71 and CVA16 VLP production was investigated. Enhanced EV71 and CVA16 VLP production was observed in Sf9 cells compared to High Five™ cells. Lowering the incubation temperature from the standard 27°C to 21°C increased the production of both VLPs in Sf9 cells. Serial passaging of CVA16 BV stocks in cell culture had a detrimental effect on the productivity of the structural proteins and the effect was observed with only 5 passages of BV stocks. A 2.7× higher production yield was achieved with EV71 compared to CVA16. High-resolution asymmetric flow field-flow fractionation couple with multi-angle light scattering (AF4-MALS) was used for the first time to characterize EV71 and CVA16 VLPs, displaying an average root mean square radius of 15±1nm and 15.3±5.8 nm respectively. This study highlights the need for different approaches in the design of production process to develop a bivalent EV71 and CVA16 vaccine.
    Matched MeSH terms: Enterovirus A, Human/genetics
  6. Chan YF, Wee KL, Chiam CW, Khor CS, Chan SY, Amalina W MZ, et al.
    Trop Biomed, 2012 Sep;29(3):451-66.
    PMID: 23018509 MyJurnal
    Three genomic regions, VP4 capsid, VP1 capsid and 3D RNA polymerase of human enterovirus 71 (EV-71) and coxsackievirus A16 (CV-A16) were sequenced to understand the evolution of these viruses in Malaysia. A total of 42 EV-71 and 36 CV-A16 isolates from 1997- 2008 were sequenced. Despite the presence of many EV-71 subgenotypes worldwide, only subgenotypes B3, B4, B5, C1 and C2 were present in Malaysia. Importation of other subgenotypes such as C3, C4/D and C5 from other countries was infrequent. For CV-A16, the earlier subgenotype B1 was replaced by subgenotypes B2a and the recent B2c. Subgenotype B2a was present throughout the study while B2c only emerged in 2005. No genetic signatures could be attributed to viral virulence suggesting that host factors have a major role in determining the outcome of infection. Only three EV-71 B3 isolates showed non-consistent phylogeny in the 3D RNA polymerase region which indicated occurrence of recombination in EV-71. High genetic diversity was observed in the Malaysian EV-71 but Malaysian CV-A16 showed low genetic diversity in the three genomic regions sequenced. EV-71 showed strong purifying selection, but that occurred to a lesser extent in CV-A16.
    Matched MeSH terms: Enterovirus A, Human/genetics*
  7. Yee PTI, Tan SH, Ong KC, Tan KO, Wong KT, Hassan SS, et al.
    Sci Rep, 2019 03 18;9(1):4805.
    PMID: 30886246 DOI: 10.1038/s41598-019-41285-z
    Besides causing mild hand, foot and mouth infections, Enterovirus A71 (EV-A71) is associated with neurological complications and fatality. With concerns about rising EV-A71 virulence, there is an urgency for more effective vaccines. The live attenuated vaccine (LAV) is a more valuable vaccine as it can elicit both humoral and cellular immune responses. A miRNA-based vaccine strain (pIY) carrying let-7a and miR-124a target genes in the EV-A71 genome which has a partial deletion in the 5'NTR (∆11 bp) and G64R mutation (3Dp°l) was designed. The viral RNA copy number and viral titers of the pIY strain were significantly lower in SHSY-5Y cells that expressed both let-7a and miR-124a. Inhibition of the cognate miRNAs expressed in RD and SHSY-5Y cells demonstrated de-repression of viral mRNA translation. A previously constructed multiply mutated strain, MMS and the pIY vaccine strain were assessed in their ability to protect 4-week old mice from hind limb paralysis. The MMS showed higher amounts of IFN-γ ex vivo than the pIY vaccine strain. There was absence of EV-A71 antigen in the skeletal muscles and spinal cord micrographs of mice vaccinated with the MMS and pIY strains. The MMS and pIY strains are promising LAV candidates developed against severe EV-A71 infections.
    Matched MeSH terms: Enterovirus A, Human/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links