Displaying publications 21 - 24 of 24 in total

Abstract:
Sort:
  1. Hamilton RG, Adkinson NF
    J Allergy Clin Immunol, 1996 Nov;98(5 Pt 1):872-83.
    PMID: 8939150
    BACKGROUND: Nonammoniated latex, ammoniated latex, and rubber glove extracts are the only sources of natural rubber (Hevea brasiliensis) latex that have potential for use as skin testing reagents in the diagnosis of latex allergy. Their diagnostic sensitivity and specificity as skin test reagents are unknown.

    OBJECTIVE: We conducted a phase 1/2 clinical study to examine the safety and diagnostic accuracy (sensitivity and specificity) of nonammoniated latex, ammoniated latex, and rubber glove extracts as skin test extracts to identify the most efficacious source material for future skin test reagent development.

    METHODS: Twenty-four adults not allergic to latex, 19 adults with hand dermatitis or pruritus, and 59 adults with a latex allergy were identified by clinical history. All provided blood and then received puncture skin tests and intradermal skin tests with nonammoniated latex, ammoniated latex, and rubber glove extracts from Malaysian H. brasiliensis latex by use of sequential titration. A glove provocation test and IgE anti-latex RAST were used to clarify positive history-negative skin test response and negative history-positive skin test response mismatches.

    RESULTS: All three extracts were biologically safe and sterile. After normalization to 1 mg/ml of total protein, all three extracts produced equivalent diagnostic sensitivity and specificity in puncture skin tests and intradermal skin tests at various extract concentrations. Optimal diagnostic accuracy was safely achieved at 100 micrograms/ml for intradermal skin tests (e.g., nonammoniated latex: puncture skin test sensitivity 96%, specificity 100%; intradermal skin test sensitivity 93%, specificity 96%). The presence of IgE antibody in skin was highly correlated with IgE anti-latex in serum (nonammoniated latex: r = 0.98, p < 0.001; ammoniated latex: r = 0.94, p < 0.001; rubber glove extract: r = 0.96, p < 0.001). All five available subjects with a positive history, negative skin test response, and absence of IgE antibody in serum had a negative glove provocation test response, indicating no clinical evidence of latex allergy. No systemic or large local allergic reactions were observed with puncture skin tests or intradermal skin tests.

    CONCLUSIONS: Equivalent diagnostic sensitivity and specificity were observed with the nonammoniated latex, ammoniated latex, and rubber glove extract skin test reagents after normalization for total protein; nonammoniated latex may be considered the reagent of choice on the basis of practical quality control and reproducibility considerations.

    Matched MeSH terms: Gloves, Protective*
  2. Kahar Bador M, Rai V, Yusof MY, Kwong WK, Assadian O
    J Hosp Infect, 2015 Jul;90(3):248-52.
    PMID: 25982193 DOI: 10.1016/j.jhin.2015.03.009
    Inappropriate use of medical gloves may support microbial transmission. New strategies could increase the safety of medical gloves without the risk of patient and surface contamination.
    Matched MeSH terms: Gloves, Protective/microbiology*; Gloves, Protective/standards
  3. How SW, Low DYS, Leo BF, Manickam S, Goh BH, Tang SY
    J Hosp Infect, 2023 Jul;137:24-34.
    PMID: 37044283 DOI: 10.1016/j.jhin.2023.03.022
    Following recent viral outbreaks, there has been a significant increase in global demand for gloves. Biomedical research focuses increasingly on antimicrobial gloves to combat microbial transmission and hospital-acquired infections. Most antimicrobial gloves are manufactured using antimicrobial chemicals such as disinfectants, biocides and sanitizers. The design of antimicrobial gloves incorporates advanced technologies, including colloidal particles and nanomaterials, to enhance antimicrobial effectiveness. A category of antimicrobial gloves also explores and integrates natural antimicrobial benefits from animals, plants and micro-organisms. Many types of antimicrobial agents are available; however, it is crucial that the selected agent exhibits a broad spectrum of activity and is not susceptible to promoting resistance. Additionally, future research should focus on the potential effect of antimicrobial gloves on the skin microbiota and irritation during extended wear. Careful integration of the antimicrobial agent is essential to ensure optimal effectiveness without compromising the mechanical properties of the gloves.
    Matched MeSH terms: Gloves, Protective
  4. Naing L, Nordin R, Musa R
    PMID: 11944730
    Increasing risk of HIV infections among health care workers has been a continuing concern. The study was designed to identify the compliance of glove utilization, and factors related to non-compliance. A sample of 150 staff nurses were recruited from the study population of 550 nurses in Hospital Universiti Sains Malaysia. Data were collected by using a structured self-administered questionnaires. The response rate was 98.4%. The study revealed a low compliance (13.5%) of glove utilization (for all 9 procedures), which varied among different procedures (27-97%). Younger nurses and those with shorter duration of working experience had better knowledge of Universal Precautions. Nurses in intensive care unit and operation theatre were better in both knowledge and compliance of glove utilization. The three commonest misconceptions were identified as "selective use of gloves for high risk groups and suspected cases", and "tendency to depend on HIV prevalence". Nurses reported practical problems including administrative and personal related such as "stock irregularity" (46%), "glove not available at the emergency sites" (44%), and "reduction of tactile sensation" (39%). It was concluded that poor knowledge and practical problems were possible responsible factors for the low compliance. A good training for nurses comprising principle and practice of Universal Precautions, updated knowledge of blood and body fluid borne infections and risk and its management, will probably improve the compliance.
    Matched MeSH terms: Gloves, Protective/utilization*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links