Displaying publications 21 - 28 of 28 in total

Abstract:
Sort:
  1. Prabhu GS, K G Rao M, Rai KS
    Int J Neurosci, 2021 Nov;131(11):1066-1077.
    PMID: 32498586 DOI: 10.1080/00207454.2020.1773819
    PURPOSE: Childhood obesity increases risk for neural dysfunctions causing learning and memory deficits. The objective of the study is to identify the effects of high fat diet-induced obesity in postnatal period on serum lipids, memory and neural cell survival in hippocampus and compare the role of choline and DHA or environmental enrichment in attenuating the alterations.

    MATERIALS AND METHODS: 21 day postnatal male Sprague Dawley rats were assigned as Normal control [NC] fed normal chow diet, Obesity-induced [OB] fed high fat diet, Obesity-induced fed choline & DHA [OB + CHO + DHA], Obesity-induced environmental enrichment [OB + EE] [n = 8/group]. Memory was assessed using radial arm maze. Subsequently blood was collected for serum lipid analysis and rats were euthanized. 5 µm hippocampal sections were processed for cresyl-violet stain. Surviving neural cells were counted using 100 µm scale.

    RESULTS: Memory errors were significantly higher [p 

    Matched MeSH terms: Maze Learning/physiology
  2. Damodaran T, Hassan Z, Navaratnam V, Muzaimi M, Ng G, Müller CP, et al.
    Behav Brain Res, 2014 Dec 15;275:252-8.
    PMID: 25239606 DOI: 10.1016/j.bbr.2014.09.014
    Cerebral ischemia is one of the leading causes of death and long-term disability in aging populations, due to the frequent occurrence of irreversible brain damage and subsequent loss of neuronal function which lead to cognitive impairment and some motor dysfunction. In the present study, the real time course of motor and cognitive functions were evaluated following the chronic cerebral ischemia induced by permanent, bilateral occlusion of the common carotid arteries (PBOCCA). Male Sprague Dawley rats (200-300g) were subjected to PBOCCA or sham-operated surgery and tested 1, 2, 3 and 4 weeks following the ischemic insult. The results showed that PBOCCA significantly reduced step-through latency in a passive avoidance task at all time points when compared to the sham-operated group. PBOCCA rats also showed significant increase in escape latencies during training in the Morris water maze, as well as a reduction of the percentage of times spend in target quadrant of the maze at all time points following the occlusion. Importantly, there were no significant changes in locomotor activity between PBOCCA and sham-operated groups. The BDNF expression in the hippocampus was 29.3±3.1% and 40.1±2.6% on day 14 and 28 post PBOCCA, respectively compared to sham-operated group. Present data suggest that the PBOCCA procedure effectively induces behavioral, cognitive symptoms associated with cerebral ischemia and, consequently, provides a valuable model to study ischemia and related neurodegenerative disorder such as Alzheimer's disease and vascular dementia.
    Matched MeSH terms: Maze Learning/physiology
  3. Abd Rashid N, Hapidin H, Abdullah H, Ismail Z, Long I
    Brain Behav, 2017 06;7(6):e00704.
    PMID: 28638710 DOI: 10.1002/brb3.704
    INTRODUCTION: REM sleep deprivation is associated with impairment in learning and memory, and nicotine treatment has been shown to attenuate this effect. Recent studies have demonstrated the importance of DREAM protein in learning and memory processes. This study investigates the association of DREAM protein in REM sleep-deprived rats hippocampus upon nicotine treatment.

    METHODS: Male Sprague Dawley rats were subjected to normal condition, REM sleep deprivation and control wide platform condition for 72 hr. During this procedure, saline or nicotine (1 mg/kg) was given subcutaneously twice a day. Then, Morris water maze (MWM) test was used to assess learning and memory performance of the rats. The rats were sacrificed and the brain was harvested for immunohistochemistry and Western blot analysis.

    RESULTS: MWM test found that REM sleep deprivation significantly impaired learning and memory performance without defect in locomotor function associated with a significant increase in hippocampus DREAM protein expression in CA1, CA2, CA3, and DG regions and the mean relative level of DREAM protein compared to other experimental groups. Treatment with acute nicotine significantly prevented these effects and decreased expression of DREAM protein in all the hippocampus regions but only slightly reduce the mean relative level of DREAM protein.

    CONCLUSION: This study suggests that changes in DREAM protein expression in CA1, CA2, CA3, and DG regions of rat's hippocampus and mean relative level of DREAM protein may involve in the mechanism of nicotine treatment-prevented REM sleep deprivation-induced learning and memory impairment in rats.

    Matched MeSH terms: Learning/physiology
  4. Chiroma SM, Hidayat Baharuldin MT, Mat Taib CN, Amom Z, Jagadeesan S, Adenan MI, et al.
    Biomed Pharmacother, 2019 Jan;109:853-864.
    PMID: 30551539 DOI: 10.1016/j.biopha.2018.10.111
    BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder and the commonest cause of dementia among the aged people. D-galactose (D-gal) is a senescence agent, while aluminium is a known neurotoxin linked to pathogenesis of AD. The combined administration of rats with d-gal and aluminium chloride (AlCl3) is considered to be an easy and a cheap method to obtain an animal model of AD. The plant Centella asiatica (CA) is reported to exert neuroprotective effects both in vitro and in vivo. Therefore, this study explored the protective effects of CA on cognition and brain ultrastructure in d-gal and AlCl3 induced rats.

    MATERIALS AND METHODS: Rats were exposed to d-gal 60 mg/kg/b.wt/day + AlCl3 200 mg/kg/b.wt/day and CA (200, 400 and 800 mg/kg/b.wt/day) and 1 mg/kg/b.wt/day of donepezil for 70 days. Different cognitive paradigms viz. T maze spontaneous alternation, modified elevated plus maze and novel object recognition test, were used to evaluate full lesions of the hippocampus, spatial learning and memory and non-spatial learning and memory respectively. Nissl's staining was used to determine the survival of hippocampus CA1 pyramidal cells, while transmission electron microscopy was used to check the ultrastructural changes.

    RESULTS: The results revealed that d-gal and AlCl3 could significantly impair behavior and cognitive functions, besides causing damage to the hippocampal CA1 pyramidal neurons in rats. In addition, it also caused ultrastructural morphological alterations in rat hippocampus. Conversely, co-administration o;f CA, irrespective of the dosage used, alleviated the cognitive impairments and pathological changes in the rats comparable to donepezil.

    CONCLUSION: In conclusion the results suggest that CA could protect cognitive impairments and morphological alterations caused by d-gal and AlCl3 toxicity in rats. Biochemical and molecular studies are ongoing to elucidate the probable pharmacodynamics of CA.

    Matched MeSH terms: Maze Learning/physiology
  5. Harun N, Hassan Z, Navaratnam V, Mansor SM, Shoaib M
    Psychopharmacology (Berl), 2015 Jul;232(13):2227-38.
    PMID: 25616583 DOI: 10.1007/s00213-015-3866-5
    RATIONALE: Mitragynine (MG) is the primary active alkaloid extracted from the leaves of Mitragyna speciosa or kratom and exhibits pharmacological activities mediated by opioid receptors. The plant has been traditionally used for its opium and psychostimulant-like effects to increase work efficiency or as a substitute in the self-treatment of opiate addiction.

    OBJECTIVES: The present study was performed to investigate the discriminative stimulus effects of MG in rats. The pharmacological mechanism of MG action and its derivative, 7-hydroxymitragynine (7-HMG) with a specific focus on opioid receptor involvement was examined in rats trained to discriminate morphine from vehicle. In order to study the dual actions of MG, the effect of cocaine substitution to the MG discriminative stimulus was also performed in MG-trained rats.

    METHODS: Male Sprague Dawley rats were trained to discriminate MG from vehicle in a two-lever drug discrimination procedure under a tandem variable-interval (VI 60') fixed-ratio (FR 10) schedule of food reinforcement.

    RESULTS: Rats acquired the MG discrimination (15.0 mg/kg, i.p.) which was similar to the acquisition of morphine discrimination (5.0 mg/kg, i.p.) in another group of rats. MG substituted fully to the morphine discriminative stimulus in a dose-dependent manner, suggesting pharmacological similarities between the two drugs. The administration of 7-HMG derivative in 3.0 mg/kg (i.p.) dose engendered full generalisation to the morphine discriminative stimulus. In addition, the MG stimulus also partially generalised to cocaine (10.0 mg/kg, i.p.) stimulus.

    CONCLUSION: The present study demonstrates that the discriminative stimulus effect of MG possesses both opioid- and psychostimulant-like subjective effects.

    Matched MeSH terms: Discrimination Learning/physiology
  6. Subramaniam SR, Khoo CS, Raymond AA, Che Din N, Syed Zakaria SZ, Tan HJ
    J Clin Neurosci, 2020 Mar;73:31-36.
    PMID: 32094071 DOI: 10.1016/j.jocn.2020.02.003
    The objective of this study is to determine prevalence and factors leading to verbal learning and memory dysfunction among patients with epilepsy. A total of 211 subjects were recruited. Their verbal memory was assessed by Rey's Auditory Verbal Learning Test (RAVLT). This test was further subdivided into four major spheres for analysis, namely the verbal learning, interference list, immediate memory and delayed memory. All data collected were analyzed using Statistical Package for Social Sciences. Among the 211 patients, 55% (n = 116) had focal seizures and the remaining 45% (n = 95) had generalized seizures. Prevalence of verbal learning and memory impairment was high at 39.97% overall, and found most commonly in patients with focal impaired awareness seizures. Verbal learning and immediate memory dysfunction were significantly lower in focal impaired awareness group compared to others. Age more than 50 years, exposure to three or more antiepileptic drugs and use of carbamazepine more than 1000 mg a day were the predictors in poor verbal memory outcome. No statistical difference was observed in the mean RAVLT scores among the gender and hand dominance groups. Between patients with and without electroencephalogram changes as well as brain magnetic resonance imaging changes, the mean RAVLT scores showed no statistically significant difference. Verbal learning and memory impairment is prevalent among the epilepsy patients. The consequences of the memory impairment can be as debilitating as the seizure control. RAVLT is a reliable and practical test in the clinical setting.
    Matched MeSH terms: Verbal Learning/physiology*
  7. Yusoff NHM, Mansor SM, Müller CP, Hassan Z
    Behav Brain Res, 2018 06 01;345:65-71.
    PMID: 29499286 DOI: 10.1016/j.bbr.2018.02.039
    Mitragynine is the major alkaloid found in the leaves of M. speciosa Korth (Rubiaceae), a plant that is native to Southeast Asia. This compound has been used, either traditionally or recreationally, due to its psychostimulant and opioid-like effects. Recently, mitragynine has been shown to exert conditioned place preference (CPP), indicating the rewarding and motivational properties of M. speciosa. Here, the involvement of GABAB receptors in mediating mitragynine reward is studied using a CPP paradigm in rats. First, we examined the effects of GABAB receptor agonist baclofen (1.25, 2.5 and 5 mg/kg) on the acquisition of mitragynine (10 mg/kg)-induced CPP. Second, the involvement of GABAB receptors in the expression of mitragynine-induced CPP was tested. We found that the acquisition of mitragynine-induced CPP could be blocked by higher doses (2.5 and 5 mg/kg) of baclofen. Baclofen at a high dose inhibited locomotor activity and caused a CPP. Furthermore, we found that baclofen (2.5 and 5 mg/kg) also blocked the expression of mitragynine-induced CPP. These findings suggest that both, the acquisition and expression of mitragynine's reinforcing properties is controlled by the GABAB receptor.
    Matched MeSH terms: Spatial Learning/physiology
  8. Damodaran T, Cheah PS, Murugaiyah V, Hassan Z
    Neurochem Int, 2020 10;139:104785.
    PMID: 32650028 DOI: 10.1016/j.neuint.2020.104785
    BACKGROUND: Clitoria ternatea (CT) is an herbal plant that has been used as a memory booster in folk medicine. CT root extract has been proven to restore chronic cerebral hypoperfusion (CCH)-induced memory deficits in a rat model, but the underlying mechanisms and the toxicity profile following repeated exposure have yet to be explored.

    THE AIM OF THE STUDY: To investigate the effects of the chronic (28 days) oral administration of CT root extract on CCH-induced cognitive impairment, neuronal damage and cholinergic deficit, and its toxicity profile in the CCH rat model.

    MATERIALS AND METHODS: The permanent bilateral occlusion of common carotid arteries (PBOCCA) surgery method was employed to develop a CCH model in male Sprague Dawley (SD) rats. Then, these rats were given oral administration of CT root extract at doses of 100, 200, and 300 mg/kg, respectively for 28 days and subjected to behavioural tests. At the end of the experiment, the brain was harvested for histological analysis and cholinesterase activities. Then, blood samples were collected and organs such as liver, kidney, lung, heart, and spleen were procured for toxicity assessment.

    RESULTS: Chronic treatment of CT root extract at doses of 200 and 300 mg/kg, restored memory impairments induced by CCH. CT root extract was also found to diminish CCH-induced neuronal damage in the CA1 region of the hippocampus. High dose (300 mg/kg) of the CT root extract was significantly inhibited the increased acetylcholinesterase (AChE) activity in the frontal cortex and hippocampus of the PBOCCA rats. In toxicity study, repeated doses of CT root extract were found to be safe in PBOCCA rats after 28 days of treatment.

    CONCLUSIONS: Our findings provided scientific evidence supporting the therapeutic potential of CT root extract in the treatment of vascular dementia (VaD)-related cholinergic abnormalities and subsequent cognitive decline.

    Matched MeSH terms: Maze Learning/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links