Displaying publications 1 - 20 of 50 in total

Abstract:
Sort:
  1. Mohd Sahini SN, Mohd Nor Hazalin NA, Srikumar BN, Jayasingh Chellammal HS, Surindar Singh GK
    Neurobiol Learn Mem, 2024 Feb;208:107880.
    PMID: 38103676 DOI: 10.1016/j.nlm.2023.107880
    Environmental enrichment (EE) is a process of brain stimulation by modifying the surroundings, for example, by changing the sensory, social, or physical conditions. Rodents have been used in such experimental strategies through exposure to diverse physical, social, and exploration conditions. The present study conducted an extensive analysis of the existing literature surrounding the impact of EE on dementia rodent models. The review emphasised the two principal aspects that are very closely related to dementia: cognitive function (learning and memory) as well as psychological factors (anxiety-related behaviours such as phobias and unrealistic worries). Also highlighted were the mechanisms involved in the rodent models of dementia showing EE effects. Two search engines, PubMed and Science Direct, were used for data collection using the following keywords: environmental enrichment, dementia, rodent model, cognitive performance, and anxiety-related behaviour. Fifty-five articles were chosen depending on the criteria for inclusion and exclusion. The rodent models with dementia demonstrated improved learning and memory in the form of hampered inflammatory responses, enhanced neuronal plasticity, and sustained neuronal activity. EE housing also prevented memory impairment through the prevention of amyloid beta (Aβ) seeding formation, an early stage of Aβ plaque formation. The rodents subjected to EE were observed to present increased exploratory activity and exert less anxiety-related behaviour, compared to those in standard housing. However, some studies have proposed that EE intervention through exercise would be too mild to counteract the anxiety-related behaviour and risk assessment behaviour deficits in the Alzheimer's disease rodent model. Future studies should be conducted on old-aged rodents and the duration of EE exposure that would elicit the greatest benefits since the existing studies have been conducted on a range of ages and EE durations. In summary, EE had a considerable effect on dementia rodent models, with the most evident being improved cognitive function.
    Matched MeSH terms: Maze Learning/physiology
  2. Titisari N, Fauzi A, Abdul Razak IS, Mohd Noor MH, Samsulrizal N, Ahmad H
    Pharm Biol, 2024 Dec;62(1):447-455.
    PMID: 38753370 DOI: 10.1080/13880209.2024.2351933
    CONTEXT: Menhaden fish oil (FO) is widely recognized for inhibiting neuroinflammatory responses and preserving brain function. Nevertheless, the mechanisms of FO influencing brain cognitive function in diabetic states remain unclear.

    OBJECTIVE: This study examines the potential role of FO in suppressing LPS-induced neuroinflammation and cognitive impairment in diabetic animals (DA).

    MATERIALS AND METHODS: Thirty male Wistar rats were divided into 5 groups: i) DA received LPS induction (DA-LPS); ii) DA received LPS induction and 1 g/kg FO (DA-LPS-1FO); iii) DA received LPS induction and 3 g/kg FO (DA-LPS-3FO); iv) animals received normal saline and 3 g/kg FO (NS-3FO) and v) control animals received normal saline (CTRL). Y-maze test was used to measure cognitive performance, while brain samples were collected for inflammatory markers and morphological analysis.

    RESULTS: DA received LPS induction, and 1 or 3 g/kg FO significantly inhibited hyperglycaemia and brain inflammation, as evidenced by lowered levels of pro-inflammatory mediators. Additionally, both DA-LPS-1FO and DA-LPS-3FO groups exhibited a notable reduction in neuronal damage and glial cell migration compared to the other groups. These results were correlated with the increasing number of entries and time spent in the novel arm of the Y-maze test.

    DISCUSSION AND CONCLUSION: This study indicates that supplementation of menhaden FO inhibits the LPS signaling pathway and protects against neuroinflammation, consequently maintaining cognitive performance in diabetic animals. Thus, the current study suggested that fish oil may be effective as a supporting therapy option for diabetes to avoid diabetes-cognitive impairment.

    Matched MeSH terms: Maze Learning/drug effects
  3. Ahad MA, Chear NJ, Keat LG, Has ATC, Murugaiyah V, Hassan Z
    Ageing Res Rev, 2023 Aug;89:101990.
    PMID: 37343678 DOI: 10.1016/j.arr.2023.101990
    Research employing a bio-enhanced fraction of Clitoria ternatea (CT) to treat cognitive decline in the animal model has not yet been found. This study aimed to determine the neuroprotective effect of CT root bioactive fraction (CTRF) in chronic cerebral hypoperfusion (CCH) rat model. CTRF and its major compound, clitorienolactones A (CLA), were obtained using column chromatography. A validated HPLC-UV method was employed for the standardization of CTRF. CCH rats were given orally either vehicle or fraction (10, 20 and 40 mg/kg). Behavioural and hippocampal neuroplasticity studies were conducted following 4 weeks post-surgery. The brain hippocampus was extracted for proteins and neurotransmitters analyses. HPLC analysis showed that CTRF contained 25% (w/w) of CLA. All tested doses of CTRF and CLA (10 mg/kg) significantly restored cognitive deficits and reversed the inhibition of neuroplasticity by CCH. However, only CTRF (40 mg/kg) and CLA (10 mg/kg) significantly reversed the elevation of amyloid-beta plaque. Subsequently, treatment with CTRF (40 mg/kg) and CLA (10 mg/kg) alleviated the downregulation of molecular synaptic signalling proteins levels caused by CCH. The neurotransmitters level was restored following treatment of CTRF and CLA. Our finding suggested that CTRF improves memory and neuroplasticity in CCH rats which was mainly contributed by CLA.
    Matched MeSH terms: Maze Learning
  4. Vollala VR, Upadhya S, Nayak S
    Bratisl Lek Listy, 2011;112(12):663-9.
    PMID: 22372329
    The aim of this study was to evaluate the learning and memory-enhancing effect of Bacopa monniera in neonatal rats.
    Matched MeSH terms: Maze Learning/drug effects*
  5. Narayanan SN, Kumar RS, Paval J, Nayak S
    Bratisl Lek Listy, 2010;111(5):247-52.
    PMID: 20568412
    In the current study we evaluated adverse effects of monosodium glutamate (MSG) on memory formation and its retrieval as well as the role of ascorbic acid (Vitamin-C) in prevention of MSG-induced alteration of neurobehavioral performance in periadolescent rats.
    Matched MeSH terms: Maze Learning/drug effects
  6. Ang HH, Cheang HS
    Jpn. J. Pharmacol., 1999 Apr;79(4):497-500.
    PMID: 10361892 DOI: 10.1254/jjp.79.497
    The anxiolytic effect of Eurycoma longifolia Jack in mice was examined. Fractions of E. longifolia Jack extract produced a significant increase in the number of squares crossed (controls= 118.2 +/- 10.2 squares), but significantly decreased both the immobility (controls = 39.4+/- 4.0 sec) and fecal pellets (controls= 12.3 +/-2.1 fecal pellets) when compared with control mice in the open-field test; they significantly increased the number of entries (controls=6.7+/-0.5 entries) and time spent (controls=42.9+/-0.1 sec) in the open arms, but decreased both the number of entries (controls= 13.2+/-0.7 entries) and time spent (controls= 193.4+/-0.7 sec) when compared with the control mice in the closed arms of the elevated plus-maze test. Furthermore, fractions of E. longifolia Jack extract decreased the fighting episodes significantly (controls= 18.0+/-0.4 fighting episodes) when compared with control mice. In addition, these results were found to be consistent with anxiolytic effect produced by diazepam. Hence, this study supports the medicinal use of this plant for anxiety therapy.
    Matched MeSH terms: Maze Learning/drug effects
  7. Narayanan SN, Kumar RS, Potu BK, Nayak S, Mailankot M
    Clinics (Sao Paulo), 2009;64(3):231-4.
    PMID: 19330250
    INTRODUCTION: With the tremendous increase in number of mobile phone users world wide, the possible risks of this technology have become a serious concern.

    OBJECTIVE: We tested the effects of mobile phone exposure on spatial memory performance.

    MATERIALS AND METHODS: Male Wistar rats (10-12 weeks old) were exposed to 50 missed calls/day for 4 weeks from a GSM (900/1800 MHz) mobile phone in vibratory mode (no ring tone). After the experimental period, the animals were tested for spatial memory performance using the Morris water maze test.

    RESULTS: Both phone exposed and control animals showed a significant decrease in escape time with training. Phone exposed animals had significantly (approximately 3 times) higher mean latency to reach the target quadrant and spent significantly (approximately 2 times) less time in the target quadrant than age- and sex-matched controls.

    CONCLUSION: Mobile phone exposure affected the acquisition of learned responses in Wistar rats. This in turn points to the poor spatial navigation and the object place configurations of the phone-exposed animals.

    Matched MeSH terms: Maze Learning/radiation effects*
  8. Ahad MA, Chear NJ, Abdullah MH, Ching-Ga TAF, Liao P, Wei S, et al.
    Ageing Res Rev, 2024 Apr;96:102252.
    PMID: 38442748 DOI: 10.1016/j.arr.2024.102252
    Chronic cerebral hypoperfusion (CCH) is a common mechanism of acute brain injury due to impairment of blood flow to the brain. Moreover, a prolonged lack of oxygen supply may result in cerebral infarction or global ischemia, which subsequently causes long-term memory impairment. Research on using Clitoria ternatea root extract for treating long-term memory has been studied extensively. However, the bioactive compound contributing to its neuroprotective effects remains uncertain. In the present study, we investigate the effects of clitorienolactone A (CLA) and B (CLB) from the roots of Clitoria ternatea extract on hippocampal neuroplasticity in rats induced by CCH. CLA and CLB were obtained using column chromatography. The rat model of CCH was induced using two-vessel occlusion surgery (2VO). The 2VO rats were given 10 mg/kg of CLA and CLB orally, followed by hippocampal neuroplasticity recording using in vivo electrophysiological. Rats received CLA and CLB (10 mg/kg) significantly reversed the impairment of long-term potentiation following 2VO surgery. Furthermore, we investigate the effect of CLA and CLB on the calcium channel using the calcium imaging technique. During hypoxia, CLA and CLB sustain the increase in intracellular calcium levels. We next predict the binding interactions of CLA and CLB against NMDA receptors containing GluN2A and GluN2B subunits using in silico molecular docking. Our result found that both CLA and CLB exhibited lower binding affinity against GluN2A and GluN2B subunits. Our findings demonstrated that bioactive compounds from Clitoria ternatea improved long-term memory deficits in the chronic cerebral hypoperfusion rat model via calcium uptake. Hence, CLA and CLB could be potential therapeutic tools for treating cognitive dysfunction.
    Matched MeSH terms: Maze Learning/physiology
  9. Chiroma SM, Hidayat Baharuldin MT, Mat Taib CN, Amom Z, Jagadeesan S, Adenan MI, et al.
    Biomed Pharmacother, 2019 Jan;109:853-864.
    PMID: 30551539 DOI: 10.1016/j.biopha.2018.10.111
    BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder and the commonest cause of dementia among the aged people. D-galactose (D-gal) is a senescence agent, while aluminium is a known neurotoxin linked to pathogenesis of AD. The combined administration of rats with d-gal and aluminium chloride (AlCl3) is considered to be an easy and a cheap method to obtain an animal model of AD. The plant Centella asiatica (CA) is reported to exert neuroprotective effects both in vitro and in vivo. Therefore, this study explored the protective effects of CA on cognition and brain ultrastructure in d-gal and AlCl3 induced rats.

    MATERIALS AND METHODS: Rats were exposed to d-gal 60 mg/kg/b.wt/day + AlCl3 200 mg/kg/b.wt/day and CA (200, 400 and 800 mg/kg/b.wt/day) and 1 mg/kg/b.wt/day of donepezil for 70 days. Different cognitive paradigms viz. T maze spontaneous alternation, modified elevated plus maze and novel object recognition test, were used to evaluate full lesions of the hippocampus, spatial learning and memory and non-spatial learning and memory respectively. Nissl's staining was used to determine the survival of hippocampus CA1 pyramidal cells, while transmission electron microscopy was used to check the ultrastructural changes.

    RESULTS: The results revealed that d-gal and AlCl3 could significantly impair behavior and cognitive functions, besides causing damage to the hippocampal CA1 pyramidal neurons in rats. In addition, it also caused ultrastructural morphological alterations in rat hippocampus. Conversely, co-administration o;f CA, irrespective of the dosage used, alleviated the cognitive impairments and pathological changes in the rats comparable to donepezil.

    CONCLUSION: In conclusion the results suggest that CA could protect cognitive impairments and morphological alterations caused by d-gal and AlCl3 toxicity in rats. Biochemical and molecular studies are ongoing to elucidate the probable pharmacodynamics of CA.

    Matched MeSH terms: Maze Learning/drug effects; Maze Learning/physiology
  10. Oktiansyah R, Juliandi B, Widayati KA, Juniantito V
    Trop Life Sci Res, 2018 Jul;29(2):1-11.
    PMID: 30112137 DOI: 10.21315/tlsr2018.29.2.1
    Neuronal cell death can occur in a tissue or organ, including the brain, which affects memory. The objectives of this study were to determine the dose of bee venom that causes neuronal death and analyse the alteration of mouse behaviour, focusing in particular on spatial memory. Fifteen male mice of Deutsche Denken Yoken (DDY) strain were divided into control and treatment groups. Bee venom was injected six times for two weeks intraperitoneally with 1.88 mg/kg, 3.76 mg/kg, 5.6 mg/kg, and 7.48 mg/kg doses of venom. Brain histology was studied using haematoxylin-eosin stained paraffin embedded 5 μm coronal sections. A Y maze test was used to assay behaviour. Parameters observed were the number of dead neurons and the percentage of mice with altered behaviour. ANOVA showed that the effects of bee venom were significantly different in the case of the neuronal death parameter but were not significantly different in the case of the mice behaviour parameter. Duncan's Multiple Range Test (DMRT) demonstrated that P4 (7.48 mg/kg) gave the highest effect of bee venom to promote neuronal death.
    Matched MeSH terms: Maze Learning
  11. Muthuraman A, Nafisa K, Sowmya MS, Arpitha BM, Choedon N, Sandy CD, et al.
    Life Sci, 2019 Mar 04.
    PMID: 30844374 DOI: 10.1016/j.lfs.2019.03.002
    BACKGROUND: Cigarette smoke is exogenous modifiable factors to changes the neurovascular complication. The chronic exposure of cigarette smoke enhances neurocognitive dysfunction.

    AIMS: The present study is focused on evaluating the role of ambrisentan (selective endothelin-A receptor antagonist) on cigarette smoke-induced cognitive impairment in Danio rerio.

    MAIN METHODS: The cognitive dysfunction was developed by cigarette smoke exposure (CSE; 10 min in 25 ml of CSE per day) for five days. The selective endothelin-A receptor antagonist i.e., ambrisentan (2.5 to 5 mg/kg; i.p. for five consecutive days) was used for testing of CSE induced cognitive dysfunction. In addition, treatment of reference drug i.e., donepezil (10 mg/kg; i.p. for five consecutive days) was used for this cognitive function study. The cognitive functions were assessed by light and dark chamber; color recognition; partition preference; horizontal compartment; and T-Maze tests. Further, the CSE induced biomarkers changes of the zebrafish brain samples were estimated.

    KEY FINDINGS: The treatment of ambrisentan showed a potential ameliorative effect against the CSE induced cognitive functions along with attenuation of biochemical changes. The results are comparable to donepezil-treated groups.

    SIGNIFICANCE: Therefore, ambrisentan can be considered for the attenuation of CSE induced impairment neurocognitive functions due to its reduction of free radical scavenging and neuroinflammatory actions as well as regulation of cholinergic neurotransmitter functions.

    Matched MeSH terms: Maze Learning
  12. Shaikh SA, Varatharajan R, Muthuraman A
    Int J Mol Sci, 2022 Nov 04;23(21).
    PMID: 36362316 DOI: 10.3390/ijms232113531
    Vascular dementia (VaD) is a serious global health issue and type 2 diabetes mellitus (T2DM) patients are at higher risk. Palm oil tocotrienol-rich fraction (TRF) exhibits neuroprotective properties; however, its effect on VaD is not reported. Hence, we evaluated TRF effectiveness in T2DM-induced VaD rats. Rats were given a single dose of streptozotocin (STZ) and nicotinamide (NA) to develop T2DM. Seven days later, diabetic rats were given TRF doses of 30, 60, and 120 mg/kg orally for 21 days. The Morris water maze (MWM) test was performed for memory assessment. Biochemical parameters such as blood glucose, plasma homocysteine (HCY) level, acetylcholinesterase (AChE) activity, reduced glutathione (GSH), superoxide dismutase (SOD) level, and histopathological changes in brain hippocampus and immunohistochemistry for platelet-derived growth factor-C (PDGF-C) expression were evaluated. VaD rats had significantly reduced memory, higher plasma HCY, increased AChE activity, and decreased GSH and SOD levels. However, treatment with TRF significantly attenuated the biochemical parameters and prevented memory loss. Moreover, histopathological changes were attenuated and there was increased PDGF-C expression in the hippocampus of VaD rats treated with TRF, indicating neuroprotective action. In conclusion, this research paves the way for future studies and benefits in understanding the potential effects of TRF in VaD rats.
    Matched MeSH terms: Maze Learning
  13. Kundap UP, Kumari Y, Othman I, Shaikh MF
    Front Pharmacol, 2017;8:515.
    PMID: 28824436 DOI: 10.3389/fphar.2017.00515
    Epilepsy is a neuronal disorder allied with distinct neurological and behavioral alterations characterized by recurrent spontaneous epileptic seizures. Impairment of the cognitive performances such as learning and memory is frequently observed in epileptic patients. Anti-epileptic drugs (AEDs) are efficient to the majority of patients. However, 30% of this population seems to be refractory to the drug treatment. These patients are not seizure-free and frequently they show impaired cognitive functions. Unfortunately, as a side effect, some AEDs could contribute to such impairment. The major problem associated with conducting studies on epilepsy-related cognitive function is the lack of easy, rapid, specific and sensitive in vivo testing models. However, by using a number of different techniques and parameters in the zebrafish, we can incorporate the unique feature of specific disorder to study the molecular and behavior basis of this disease. In the view of current literature, the goal of the study was to develop a zebrafish model of epilepsy induced cognitive dysfunction. In this study, the effect of AEDs on locomotor activity and seizure-like behavior was tested against the pentylenetetrazole (PTZ) induced seizures in zebrafish and epilepsy associated cognitive dysfunction was determined using T-maze test followed by neurotransmitter estimation and gene expression analysis. It was observed that all the AEDs significantly reversed PTZ induced seizure in zebrafish, but had a negative impact on cognitive functions of zebrafish. AEDs were found to modulate neurotransmitter levels, especially GABA, glutamate, and acetylcholine and gene expression in the drug treated zebrafish brains. Therefore, combination of behavioral, neurochemical and genenetic information, makes this model a useful tool for future research and discovery of newer and safer AEDs.
    Matched MeSH terms: Maze Learning
  14. Shajib MS, Rashid RB, Ming LC, Islam S, Sarker MMR, Nahar L, et al.
    Front Pharmacol, 2018;9:85.
    PMID: 29515437 DOI: 10.3389/fphar.2018.00085
    Polymethoxylavones (PMFs) are known to exhibit significant anti-inflammatory and neuroprotective properties.Nicotiana plumbaginifolia, an annual Bangladeshi herb, is rich in polymethoxyflavones that possess significant analgesic and anxiolytic activities. The present study aimed to determine the antinociceptive and neuropharmacological activities of polyoxygenated flavonoids namely- 3,3',5,6,7,8-hexamethoxy-4',5'-methylenedioxyflavone (1), 3,3',4',5',5,6,7,8-octamethoxyflavone (exoticin) (2), 6,7,4',5'-dimethylenedioxy-3,5,3'-trimethoxyflavone (3), and 3,3',4',5,5',8-hexamethoxy-6,7-methylenedioxyflavone (4), isolated and identified fromN. plumbaginifolia. Antinociceptive activity was assessed using the acetic-acid induced writhing, hot plate, tail immersion, formalin and carrageenan-induced paw edema tests, whereas neuropharmacological effects were evaluated in the hole cross, open field and elevated plus maze test. Oral treatment of compounds1,3, and4(12.5-25 mg/kg b.w.) exhibited dose-dependent and significant (p< 0.01) antinociceptive activity in the acetic-acid, formalin, carrageenan, and thermal (hot plate)-induced pain models. The association of ATP-sensitive K+channel and opioid systems in their antinociceptive effect was obvious from the antagonist effect of glibenclamide and naloxone, respectively. These findings suggested central and peripheral antinociceptive activities of the compounds. Compound1,3, and4(12.5 mg/kg b.w.) demonstrated significant (p< 0.05) anxiolytic-like activity in the elevated plus-maze test, while the involvement of GABAAreceptor in the action of compound3and4was evident from the reversal effects of flumazenil. In addition, compounds1and4(12.5-25 mg/kg b.w) exhibited anxiolytic activity without altering the locomotor responses. The present study suggested that the polymethoxyflavones (1-4) fromN. Plumbaginifoliacould be considered as suitable candidates for the development of analgesic and anxiolytic agents.
    Matched MeSH terms: Maze Learning
  15. Parsi S, Pandamooz S, Heidari S, Naji M, Morfini G, Ahmadiani A, et al.
    Neuroscience, 2015 Jan 22;284:99-106.
    PMID: 25270904 DOI: 10.1016/j.neuroscience.2014.09.045
    Alzheimer's disease (AD) is characterized by progressive and irreversible cognitive and memory impairment. The discovery of familial forms of AD (fAD) in association with specific gene mutations facilitated the generation of numerous rodent models. These models in turn proved valuable for the study of molecular mechanisms underlying AD pathogenesis, and facilitated translational research and preclinical drug development. This study aimed to introduce a new rat model of AD simulating some aspects of the sporadic cases of disease.
    Matched MeSH terms: Maze Learning/physiology
  16. George A, Ng CP, O'Callaghan M, Jensen GS, Wong HJ
    PMID: 24886679 DOI: 10.1186/1472-6882-14-161
    Polygonum minus Huds.is a culinary flavouring that is common in South East Asian cuisine and as a remedy for diverse maladies ranging from indigestion to poor eyesight. The leaves of this herb have been reported to be high in antioxidants. Flavonoids which have been associated with memory, cognition and protection against neurodegeneration were found in P. minus.
    Matched MeSH terms: Maze Learning/drug effects
  17. Farah Naquiah MZ, James RJ, Suratman S, Lee LS, Mohd Hafidz MI, Salleh MZ, et al.
    Behav Brain Funct, 2016 Aug 31;12(1):23.
    PMID: 27582026 DOI: 10.1186/s12993-016-0107-y
    Heroin addiction is a growing concern, affecting the socioeconomic development of many countries. Little is known about transgenerational effects on phenotype changes due to heroin addiction. This study aims to investigate changes in level of anxiety and aggression up to four different generations of adult male rats due to paternal exposure to heroin.
    Matched MeSH terms: Maze Learning/drug effects
  18. Hassan Z, Suhaimi FW, Ramanathan S, Ling KH, Effendy MA, Müller CP, et al.
    J. Psychopharmacol. (Oxford), 2019 07;33(7):908-918.
    PMID: 31081443 DOI: 10.1177/0269881119844186
    BACKGROUND: Mitragynine is the major alkaloid of Mitragyna speciosa (Korth.) or Kratom, a psychoactive plant widely abused in Southeast Asia. While addictive effects of the substance are emerging, adverse cognitive effects of this drug and neuropharmacological actions are insufficiently understood.

    AIMS: In the present study, we investigated the effects of mitragynine on spatial learning and synaptic transmission in the CA1 region of the hippocampus.

    METHODS: Male Sprague Dawley rats received daily (for 12 days) training sessions in the Morris water maze, with each session followed by treatment either with mitragynine (1, 5, or 10 mg/kg; intraperitoneally), morphine (5 mg/kg; intraperitoneally) or a vehicle. In the second experiment, we recorded field excitatory postsynaptic potentials in the hippocampal CA1 area in anesthetized rats and assessed the effects of mitragynine on baseline synaptic transmission, paired-pulse facilitation, and long-term potentiation. Gene expression of major memory- and addiction-related genes was investigated and the effects of mitragynine on Ca2+ influx was also examined in cultured primary neurons from E16-E18 rats.

    RESULTS/OUTCOMES: Escape latency results indicate that animals treated with mitragynine displayed a slower rate of acquisition as compared to their control counterparts. Further, mitragynine treatment significantly reduced the amplitude of baseline (i.e. non-potentiated) field excitatory postsynaptic potentials and resulted in a minor suppression of long-term potentiation in CA1. Bdnf and αCaMKII mRNA expressions in the brain were not affected and Ca2+ influx elicited by glutamate application was inhibited in neurons pre-treated with mitragynine.

    CONCLUSIONS/INTERPRETATION: These data suggest that high doses of mitragynine (5 and 10 mg/kg) cause memory deficits, possibly via inhibition of Ca2+ influx and disruption of hippocampal synaptic transmission and long-term potentiation induction.

    Matched MeSH terms: Maze Learning/drug effects*
  19. Prabhu GS, K G Rao M, Rai KS
    Int J Neurosci, 2021 Nov;131(11):1066-1077.
    PMID: 32498586 DOI: 10.1080/00207454.2020.1773819
    PURPOSE: Childhood obesity increases risk for neural dysfunctions causing learning and memory deficits. The objective of the study is to identify the effects of high fat diet-induced obesity in postnatal period on serum lipids, memory and neural cell survival in hippocampus and compare the role of choline and DHA or environmental enrichment in attenuating the alterations.

    MATERIALS AND METHODS: 21 day postnatal male Sprague Dawley rats were assigned as Normal control [NC] fed normal chow diet, Obesity-induced [OB] fed high fat diet, Obesity-induced fed choline & DHA [OB + CHO + DHA], Obesity-induced environmental enrichment [OB + EE] [n = 8/group]. Memory was assessed using radial arm maze. Subsequently blood was collected for serum lipid analysis and rats were euthanized. 5 µm hippocampal sections were processed for cresyl-violet stain. Surviving neural cells were counted using 100 µm scale.

    RESULTS: Memory errors were significantly higher [p 

    Matched MeSH terms: Maze Learning/physiology
  20. Suliman NA, Taib CNM, Moklas MAM, Basir R
    Neurotox Res, 2018 02;33(2):402-411.
    PMID: 28933048 DOI: 10.1007/s12640-017-9806-x
    Neurogenesis is influenced by various external factors such as enriched environments. Some researchers had postulated that neurogenesis has contributed to the hippocampal learning and memory. This project was designed to observe the effect of Delta-9-tetrahydrocannabinol (∆9-THC) in cognitive performance that influenced by the neurogenesis. Different doses of ∆9-THC were used for observing the neurogenesis mechanism occurs in the hippocampus of rats. The brains were stained with antibodies, namely BrdU, glial fibrillary acidic protein (GFAP), nestin, doublecortin (DCX) and class III β-tubulin (TuJ-1). The cognitive test was used novel-object discrimination test (NOD) while the proteins involved, DCX and brain-derived neurotrophic factor (BDNF), were measured. Throughout this study, ∆9-THC enhanced the markers involved in all stages of neurogenesis mechanism. Simultaneously, the cognitive behaviour of rat also showed improvement in learning and memory functions observed in behavioural test and molecular perspective. Administration of ∆9-THC was observed to enhance the neurogenesis in the brain, especially in hippocampus thus improved the cognitive function of rats.
    Matched MeSH terms: Maze Learning/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links