METHODS: We used two diffusion tensor imaging measures, fractional anisotropy (FA) and mean diffusivity (MD), in the most up-to-date UK Biobank neuroimaging data release (FA: n = 6401; MD: n = 6390).
RESULTS: We found significantly lower FA in the superior longitudinal fasciculus (β = -.035, pcorrected = .029) and significantly higher MD in a global measure of thalamic radiations (β = .029, pcorrected = .021), as well as higher MD in the superior (β = .034, pcorrected = .039) and inferior (β = .029, pcorrected = .043) longitudinal fasciculus and in the anterior (β = .025, pcorrected = .046) and superior (β = .027, pcorrected = .043) thalamic radiation associated with NETRIN1-PRS. Genomic-PRS was also associated with lower FA and higher MD in several tracts.
CONCLUSIONS: Our findings indicate that variation in the NETRIN1 signaling pathway may confer risk for major depressive disorder through effects on a number of white matter tracts.
METHODS: Data were combined from 3024 MDD cases and 2741 control subjects from nine cohorts contributing to the MDD Working Group of the Psychiatric Genomics Consortium. MDD-PRS were based on a discovery sample of ∼110,000 independent individuals. CT was assessed as exposure to sexual or physical abuse during childhood. In a subset of 1957 cases and 2002 control subjects, a more detailed five-domain measure additionally included emotional abuse, physical neglect, and emotional neglect.
RESULTS: MDD was associated with the MDD-PRS (odds ratio [OR] = 1.24, p = 3.6 × 10-5, R2 = 1.18%) and with CT (OR = 2.63, p = 3.5 × 10-18 and OR = 2.62, p = 1.4 ×10-5 for the two- and five-domain measures, respectively). No interaction was found between MDD-PRS and the two-domain and five-domain CT measure (OR = 1.00, p = .89 and OR = 1.05, p = .66).
CONCLUSIONS: No meta-analytic evidence for interaction between MDD-PRS and CT was found. This suggests that the previously reported interaction effects, although both statistically significant, can best be interpreted as chance findings. Further research is required, but this study suggests that the genetic heterogeneity of MDD is not attributable to genome-wide moderation of genetic effects by CT.