Displaying publications 21 - 27 of 27 in total

Abstract:
Sort:
  1. Ramalingam A, Budin SB, Mohd Fauzi N, Ritchie RH, Zainalabidin S
    Sci Rep, 2021 07 05;11(1):13845.
    PMID: 34226619 DOI: 10.1038/s41598-021-93234-4
    Long-term nicotine intake is associated with an increased risk of myocardial damage and dysfunction. However, it remains unclear whether targeting mitochondrial reactive oxygen species (ROS) prevents nicotine-induced cardiac remodeling and dysfunction. This study investigated the effects of mitoTEMPO (a mitochondria-targeted antioxidant), and resveratrol (a sirtuin activator) , on nicotine-induced cardiac remodeling and dysfunction. Sprague-Dawley rats were administered 0.6 mg/kg nicotine daily with 0.7 mg/kg mitoTEMPO, 8 mg/kg resveratrol, or vehicle alone for 28 days. At the end of the study, rat hearts were collected to analyze the cardiac structure, mitochondrial ROS level, oxidative stress, and inflammation markers. A subset of rat hearts was perfused ex vivo to determine the cardiac function and myocardial susceptibility to ischemia-reperfusion injury. Nicotine administration significantly augmented mitochondrial ROS level, cardiomyocyte hypertrophy, fibrosis, and inflammation in rat hearts. Nicotine administration also induced left ventricular dysfunction, which was worsened by ischemia-reperfusion in isolated rat hearts. MitoTEMPO and resveratrol both significantly attenuated the adverse cardiac remodeling induced by nicotine, as well as the aggravation of postischemic ventricular dysfunction. Findings from this study show that targeting mitochondrial ROS with mitoTEMPO or resveratrol partially attenuates nicotine-induced cardiac remodeling and dysfunction.
    Matched MeSH terms: Myocytes, Cardiac/metabolism
  2. Ramalingam A, Mohd Fauzi N, Budin SB, Zainalabidin S
    Basic Clin Pharmacol Toxicol, 2021 Feb;128(2):322-333.
    PMID: 32991780 DOI: 10.1111/bcpt.13500
    This study investigated the impact of prolonged nicotine administration on myocardial susceptibility to ischaemia-reperfusion (I/R) injury in a rat model and determined whether nicotine affects mitochondrial reactive oxygen species (ROS) production and permeability transition in rat hearts. Sprague-Dawley rats were administered 0.6 or 1.2 mg/kg nicotine for 28 days, and their hearts were isolated at end-point for assessment of myocardial susceptibility to I/R injury ex vivo. Rat heart mitochondria were also isolated from a subset of rats for analysis of mitochondrial ROS production and permeability transition. Compared to the vehicle controls, rat hearts isolated from nicotine-administered rats exhibited poorer left ventricular function that worsened over the course of I/R. Coronary flow rate was also severely impaired in the nicotine groups at baseline and this worsened after I/R. Nicotine administration significantly increased mitochondrial ROS production and permeability transition relative to the vehicle controls. Interestingly, pre-incubation of isolated mitochondria with ROS scavengers (superoxide dismutase and mitoTEMPO) significantly abolished nicotine-induced increase in mitochondria permeability transition in isolated rat heart mitochondria. Overall, our data showed that prolonged nicotine administration enhances myocardial susceptibility to I/R injury in rats and this is associated with mitochondrial ROS-driven increase in mitochondrial permeability transition.
    Matched MeSH terms: Myocytes, Cardiac/metabolism
  3. Shimoda K, Nishimura A, Sunggip C, Ito T, Nishiyama K, Kato Y, et al.
    Sci Rep, 2020 08 18;10(1):13926.
    PMID: 32811872 DOI: 10.1038/s41598-020-70956-5
    Cardiac tissue remodeling caused by hemodynamic overload is a major clinical outcome of heart failure. Uridine-responsive purinergic P2Y6 receptor (P2Y6R) contributes to the progression of cardiovascular remodeling in rodents, but it is not known whether inhibition of P2Y6R prevents or promotes heart failure. We demonstrate that inhibition of P2Y6R promotes pressure overload-induced sudden death and heart failure in mice. In neonatal cardiomyocytes, knockdown of P2Y6R significantly attenuated hypertrophic growth and cell death caused by hypotonic stimulation, indicating the involvement of P2Y6R in mechanical stress-induced myocardial dysfunction. Unexpectedly, compared with wild-type mice, deletion of P2Y6R promoted pressure overload-induced sudden death, as well as cardiac remodeling and dysfunction. Mice with cardiomyocyte-specific overexpression of P2Y6R also exhibited cardiac dysfunction and severe fibrosis. In contrast, P2Y6R deletion had little impact on oxidative stress-mediated cardiac dysfunction induced by doxorubicin treatment. These findings provide overwhelming evidence that systemic inhibition of P2Y6R exacerbates pressure overload-induced heart failure in mice, although P2Y6R in cardiomyocytes contributes to the progression of cardiac fibrosis.
    Matched MeSH terms: Myocytes, Cardiac/metabolism
  4. Sudi SB, Tanaka T, Oda S, Nishiyama K, Nishimura A, Sunggip C, et al.
    Sci Rep, 2019 07 05;9(1):9785.
    PMID: 31278358 DOI: 10.1038/s41598-019-46252-2
    Myocardial atrophy, characterized by the decreases in size and contractility of cardiomyocytes, is caused by severe malnutrition and/or mechanical unloading. Extracellular adenosine 5'-triphosphate (ATP), known as a danger signal, is recognized to negatively regulate cell volume. However, it is obscure whether extracellular ATP contributes to cardiomyocyte atrophy. Here, we report that ATP induces atrophy of neonatal rat cardiomyocytes (NRCMs) without cell death through P2Y2 receptors. ATP led to overproduction of reactive oxygen species (ROS) through increased amount of NADPH oxidase (Nox) 2 proteins, due to increased physical interaction between Nox2 and canonical transient receptor potential 3 (TRPC3). This ATP-mediated formation of TRPC3-Nox2 complex was also pathophysiologically involved in nutritional deficiency-induced NRCM atrophy. Strikingly, knockdown of either TRPC3 or Nox2 suppressed nutritional deficiency-induced ATP release, as well as ROS production and NRCM atrophy. Taken together, we propose that TRPC3-Nox2 axis, activated by extracellular ATP, is the key component that mediates nutritional deficiency-induced cardiomyocyte atrophy.
    Matched MeSH terms: Myocytes, Cardiac/metabolism*
  5. Valli H, Ahmad S, Sriharan S, Dean LD, Grace AA, Jeevaratnam K, et al.
    Clin Exp Pharmacol Physiol, 2018 03;45(3):278-292.
    PMID: 29027245 DOI: 10.1111/1440-1681.12870
    Acute RyR2 activation by exchange protein directly activated by cAMP (Epac) reversibly perturbs myocyte Ca2+ homeostasis, slows myocardial action potential conduction, and exerts pro-arrhythmic effects. Loose patch-clamp studies, preserving in vivo extracellular and intracellular conditions, investigated Na+ current in intact cardiomyocytes in murine atrial and ventricular preparations following Epac activation. Depolarising steps to varying test voltages activated typical voltage-dependent Na+ currents. Plots of peak current against depolarisation from resting potential gave pretreatment maximum atrial and ventricular currents of -20.23 ± 1.48 (17) and -29.8 ± 2.4 (10) pA/μm2 (mean ± SEM [n]). Challenge by 8-CPT (1 μmol/L) reduced these currents to -11.21 ± 0.91 (12) (P  .05). Assessment of the inactivation that followed by applying subsequent steps to a fixed voltage 100 mV positive to resting potential gave concordant results. Half-maximal inactivation voltages and steepness factors, and time constants for Na+ current recovery from inactivation in double-pulse experiments, were similar through all the pharmacological conditions. Intracellular sharp microelectrode membrane potential recordings in intact Langendorff-perfused preparations demonstrated concordant variations in maximum rates of atrial and ventricular action potential upstroke, (dV/dt)max . We thus demonstrate an acute, reversible, Na+ channel inhibition offering a possible mechanism for previously reported pro-arrhythmic slowing of AP propagation following modifications of Ca2+ homeostasis, complementing earlier findings from chronic alterations in Ca2+ homeostasis in genetically-modified RyR2-P2328S hearts.
    Matched MeSH terms: Myocytes, Cardiac/metabolism
  6. Valli H, Ahmad S, Jiang AY, Smyth R, Jeevaratnam K, Matthews HR, et al.
    Mech Ageing Dev, 2018 01;169:1-9.
    PMID: 29197478 DOI: 10.1016/j.mad.2017.11.016
    INTRODUCTION: Recent studies reported that energetically deficient murine Pgc-1β-/- hearts replicate age-dependent atrial arrhythmic phenotypes associated with their corresponding clinical conditions, implicating action potential (AP) conduction slowing consequent upon reduced AP upstroke rates.

    MATERIALS AND METHODS: We tested a hypothesis implicating Na+ current alterations as a mechanism underlying these electrophysiological phenotypes. We applied loose patch-clamp techniques to intact young and aged, WT and Pgc-1β-/-, atrial cardiomyocyte preparations preserving their in vivo extracellular and intracellular conditions.

    RESULTS AND DISCUSSION: Depolarising steps activated typical voltage-dependent activating and inactivating inward (Na+) currents whose amplitude increased or decreased with the amplitudes of the activating, or preceding inactivating, steps. Maximum values of peak Na+ current were independently influenced by genotype but not age or interacting effects of genotype and age on two-way ANOVA. Neither genotype, nor age, whether independently or interactively, influenced voltages at half-maximal current, or steepness factors, for current activation and inactivation, or time constants for recovery from inactivation following repolarisation. In contrast, delayed outward (K+) currents showed similar activation and rectification properties through all experimental groups. These findings directly demonstrate and implicate reduced Na+ in contrast to unchanged K+ current, as a mechanism for slowed conduction causing atrial arrhythmogenicity in Pgc-1β-/- hearts.

    Matched MeSH terms: Myocytes, Cardiac/metabolism*
  7. Wan Safwani WK, Makpol S, Sathapan S, Chua KH
    PMID: 22221649 DOI: 10.1186/1477-5751-11-3
    Adipose tissue is a source of multipotent adult stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic cells and adipogenic cells. Several reports have shown adipose-derived stem cells (ASCs) have the ability to undergo cardiomyogenesis. Studies have shown 5-azacytidine can successfully drive stem cells such as bone marrow derived stem cells to differentiate into cardiomyogenic cells. Therefore, in this study, we investigated the effect 5-azacytidine on the cardiogenic ability of ASCs.
    Matched MeSH terms: Myocytes, Cardiac/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links