Acute RyR2 activation by exchange protein directly activated by cAMP (Epac) reversibly perturbs myocyte Ca2+ homeostasis, slows myocardial action potential conduction, and exerts pro-arrhythmic effects. Loose patch-clamp studies, preserving in vivo extracellular and intracellular conditions, investigated Na+ current in intact cardiomyocytes in murine atrial and ventricular preparations following Epac activation. Depolarising steps to varying test voltages activated typical voltage-dependent Na+ currents. Plots of peak current against depolarisation from resting potential gave pretreatment maximum atrial and ventricular currents of -20.23 ± 1.48 (17) and -29.8 ± 2.4 (10) pA/μm2 (mean ± SEM [n]). Challenge by 8-CPT (1 μmol/L) reduced these currents to -11.21 ± 0.91 (12) (P .05). Assessment of the inactivation that followed by applying subsequent steps to a fixed voltage 100 mV positive to resting potential gave concordant results. Half-maximal inactivation voltages and steepness factors, and time constants for Na+ current recovery from inactivation in double-pulse experiments, were similar through all the pharmacological conditions. Intracellular sharp microelectrode membrane potential recordings in intact Langendorff-perfused preparations demonstrated concordant variations in maximum rates of atrial and ventricular action potential upstroke, (dV/dt)max . We thus demonstrate an acute, reversible, Na+ channel inhibition offering a possible mechanism for previously reported pro-arrhythmic slowing of AP propagation following modifications of Ca2+ homeostasis, complementing earlier findings from chronic alterations in Ca2+ homeostasis in genetically-modified RyR2-P2328S hearts.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.