Displaying publications 21 - 22 of 22 in total

Abstract:
Sort:
  1. Boyle DK, Forsyth A, Bagg J, Stroubou K, Griffiths CE, Burke FJ
    J Dent, 2002 Jul-Aug;30(5-6):233-41.
    PMID: 12450714
    Glove wearing during patient treatment has been central to dental surgery infection control for over 15 years. However, little is known about the cutaneous effects of glove wearing on the hands of dental healthcare workers (DHCWs). The objective of this project was to assess the hand skin health of DHCWs before and after wearing gloves of two types and to compare this with a control group of non-DHCWs.
    Matched MeSH terms: Nitriles/chemistry
  2. Asekunowo PO, Haque RA, Razali MR, Avicor SW, Wajidi MFF
    Eur J Med Chem, 2018 Apr 25;150:601-615.
    PMID: 29550733 DOI: 10.1016/j.ejmech.2018.03.029
    A series of four benzimidazolium based nitrile-functionalized mononuclear-Ag(I)-N-heterocyclic carbene and binuclear-Ag(I)-N-heterocyclic carbene (Ag(I)-NHC) hexafluorophosphate complexes (5b-8b) were synthesized by reacting the corresponding hexafluorophosphate salts (1b-4b) with Ag2O in acetonitrile, respectively. These compounds were characterized by 1H NMR, 13C NMR, IR, UV-visible spectroscopic techniques, elemental analyses and molar conductivity. Additionally, 8b was structurally characterized by single crystal X-ray diffraction technique. Preliminary in vitro antibacterial evaluation was conducted for all the compounds against two standard bacteria; gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacterial strains. Most of the Ag(I)-NHC complexes (5b-8b) showed moderate to good antibacterial activity with MIC values in the range of 12.5-100 μg/mL. Especially, compound 8b exhibited promising anti-Staphylococcus aureus activity with a low MIC value (12.5 μg/mL). However, all the hexafluorophosphate salts (1b-4b) were inactive against the bacteria strains. The preliminary interactive investigation revealed that the most active compound, 8b, could effectively intercalate into DNA to form 8b-DNA complex which shows a better binding ability for DNA (Kb = 3.627 × 106) than the complexes 5b-7b (2.177 × 106, 8.672 × 105 and 6.665 × 105, respectively). Nuclease activity of the complexes on plasmid DNA and Aedes albopictus genomic DNA was time-dependent, although minimal. The complexes were larvicidal to the mosquito, with 5b, 6b and 8b being highly active. Developmental progression from the larval to the adult stage was affected by the complexes, progressively being toxic to the insect's development with increasing concentration. These indicate the potential use of these complexes as control agents against bacteria and the dengue mosquito Ae. albopictus.
    Matched MeSH terms: Nitriles/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links