Displaying publications 21 - 23 of 23 in total

Abstract:
Sort:
  1. Chong PP, Tung CH, Rahman NA, Yajima M, Chin FW, Yeng CL, et al.
    Acta Ophthalmol, 2014 Nov;92(7):e569-79.
    PMID: 25043991 DOI: 10.1111/aos.12427
    The aim of the study was to determine the prevalence of human papillomavirus (HPV) in primary and recurrent pterygia samples collected from different ethnic groups in the equatorial Malay Peninsula.
    Matched MeSH terms: Pterygium/ethnology; Pterygium/surgery; Pterygium/virology*
  2. Chen KJ, Lai CC, Chen HC, Chong YJ, Sun MH, Chen YP, et al.
    Microorganisms, 2021 Apr 24;9(5).
    PMID: 33923356 DOI: 10.3390/microorganisms9050918
    Enterococcus faecalis is known to cause severe acute endophthalmitis and often leads to poor visual outcomes in most ophthalmic infections. This retrospective study is to report the clinical settings, antimicrobial susceptibility patterns, and visual outcome of E. faecalis endophthalmitis at a tertiary referral institution in Taoyuan, Taiwan. E. faecalis endophthalmitis was diagnosed in 37 eyes of 37 patients. Post-cataract surgery was the most common cause (n = 27, 73%), followed by bleb-associated (n = 3, 8%), endogenous (n = 2, 5%), corneal ulcer-related (n = 2, 5%), post-vitrectomy (n = 1, 3%), post-pterygium excision (n = 1, 3%), and trauma (n = 1, 3%). Visual acuities upon presentation ranged from counting fingers to no light perception. Pars plana vitrectomy with intravitreal antibiotics were performed in 23 eyes (76%) as primary or secondary treatment. All isolates (37/37, 100%) were sensitive to vancomycin, penicillin, ampicillin, and teicoplanin. Six of 22 eyes (27%) were resistant to high-level gentamicin (minimum inhibitory concentration > 500 mg/L). Final visual acuities were better than 20/400 in 11 eyes (30%), 5/200 to hand motions in 4 eyes (11%), and light perception to no light perception in 22 eyes (59%). Three eyes were treated with evisceration. Compared with non-cataract subgroups, the post-cataract subgroup showed a significant difference of better visual prognosis (p = 0.016).
    Matched MeSH terms: Pterygium
  3. Abubakar SA, Isa MM, Omar N, Tan SW
    Mol Med Rep, 2020 Dec;22(6):4931-4937.
    PMID: 33174018 DOI: 10.3892/mmr.2020.11560
    The human ocular surface produces highly conserved cationic peptides. Human β‑defensins (HBDs) serve an important role in innate and adaptive immunity. They are primarily expressed in epithelial cells in response to infection and provide the first line of defence against invading microbes. Defensin β1 (DEFB1) is constitutively expressed and regulated by inflammatory mediators including interferon‑γ, lipopolysaccharide and peptidoglycans. DEFB4A is locally induced in response to microbial infection while DEFB109 is induced via Toll‑like receptor 2. The present study examined the expression of the HBD DEFB1, DEFB4A and DEFB109 genes in pterygium. The pterygium tissues and normal conjunctiva samples were obtained from 18 patients undergoing pterygium surgery. The reverse transcription‑quantitative polymerase chain reaction method was employed to determine the expression of DEFB1, DEFB4A and DEFB109 genes. The results revealed that the expression of DEFB1 and DEFB4A was significantly higher and upregulated in pterygium samples when compared with normal conjunctiva samples from each patient (P<0.05), while the expression of DEFB109 was observed to be lower in pterygium samples when compared with normal samples from the same patient. Previous studies have revealed that DEFB1 and DEFB4A genes are present in low concentrations inside the human eye, and they are upregulated during the maturation of keratinocytes, suggesting a possible role in cell differentiation. The DEFB109 gene is present in higher concentrations inside the human eye, though it is newly discovered. It has also been reported that DEFB1 may be involved in carcinogenesis epithelial tumours. Collectively, the current data suggests that HBDs may serve a crucial role in the pathogenesis and development of pterygia, and thus may be considered as novel molecular targets in understanding pterygia development.
    Matched MeSH terms: Pterygium/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links