The predominantly tropical ophionine genus Enicospilus Stephens, 1835 is one of the largest genera of Darwin wasps (Hymenoptera, Ichneumonidae), with more than 700 extant species worldwide that are usually crepuscular or nocturnal and are parasitoids of Lepidoptera larvae. In the present study, the Japanese species of Enicospilus are revised using an integrative approach (combined morphology and DNA barcoding). On the basis of 3,110 specimens, 47 Enicospilus species are recognised in Japan, eight of which are new species (E. acutus Shimizu, sp. nov., E. kunigamiensis Shimizu, sp. nov., E. limnophilus Shimizu, sp. nov., E. matsumurai Shimizu, sp. nov., E. pseudopuncticulatus Shimizu, sp. nov., E. sharkeyi Shimizu, sp. nov., E. takakuwai Shimizu, sp. nov., and E. unctus Shimizu, sp. nov.), seven are new records from Japan (E. jilinensis Tang, 1990, E. laqueatus (Enderlein, 1921), E. multidens Chiu, 1954, stat. rev., E. puncticulatus Tang, 1990, E. stenophleps Cushman, 1937, E. vestigator (Smith, 1858), and E. zeugos Chiu, 1954, stat. rev.), 32 had already been recorded in Japan; three (E. biharensis Townes, Townes & Gupta, 1961, E. flavicaput (Morley, 1912), and E. merdarius (Gravenhorst, 1829)) have been erroneously recorded from Japan based on misidentifications, and four names that were previously on the Japanese list are deleted through synonymy. The following taxonomic changes are proposed: E. vacuus Gauld & Mitchell, 1981, syn. nov. (= E. formosensis (Uchida, 1928)); E. multidensstat. rev.; E. striatus Cameron, 1899, syn. nov. = E. lineolatus (Roman, 1913), syn. nov. = E. uniformis Chiu, 1954, syn. nov. = E. flatus Chiu, 1954, syn. nov. = E. gussakovskii Viktorov, 1957, syn. nov. = E. striolatus Townes, Townes & Gupta, 1961, syn. nov. = E. unicornis Rao & Nikam, 1969, syn. nov. = E. unicornis Rao & Nikam, 1970, syn. nov. (= E. pungens (Smith, 1874)); E. iracundus Chiu, 1954, syn. nov. (= E. sakaguchii (Matsumura & Uchida, 1926)); E. sigmatoides Chiu, 1954, syn. nov. (= E. shikokuensis (Uchida, 1928)); E. yamanakai (Uchida, 1930), syn. nov. (= E. shinkanus (Uchida, 1928)); E. ranunculus Chiu, 1954, syn. nov. (= E. yezoensis (Uchida, 1928)); and E. zeugosstat. rev. = E. henrytownesi Chao & Tang, 1991, syn. nov. In addition, the following new regional and country records are also provided: E. flavocephalus (Kirby, 1900), E. puncticulatus, and E. vestigator from the Eastern Palaearctic region, E. laqueatus from the Eastern Palaearctic and Oceanic regions, and E. maruyamanus (Uchida, 1928) from the Oriental region; E. abdominalis (Szépligeti, 1906) from Nepal, E. flavocephalus from Laos, E. formosensis from Laos and Malaysia, E. insinuator (Smith, 1860) from Taiwan, E. maruyamanus from India and Philippines, E. nigronotatus Cameron, 1903, E. riukiuensis (Matsumura & Uchida, 1926), and E. sakaguchii from Indonesia, E. pungens from 14 countries (Australia, Bhutan, Brunei, Indonesia, Laos, Malaysia, Nepal, New Caledonia, Papua New Guinea, Philippines, Solomon Islands, Sri Lanka, Tajikistan, and Taiwan), and E. yezoensis from South Korea. An identification key to all Japanese species of Enicospilus is proposed. Although 47 species are recognised in the present study, approximately 55 species could potentially be found in Japan based on ACE and Chao 1 estimators. The latitudinal diversity gradient of Enicospilus species richness is also tested in the Japanese archipelago based on the constructed robust taxonomic framework and extensive samples. Enicospilus species richness significantly increases towards the south, contrary to the 'anomalous' pattern of some other ichneumonid subfamilies.
Depreissia is a little known genus comprising two hymenopteran-mimicking species, one found in Central Africa and one in the north of Borneo. The male of Depreissia decipiens is redescribed, the female is described for the first time. The carapace is elongated, dorsally flattened and rhombus-shaped, the rear of the thorax laterally depressed and transformed, with a pair of deep pits; the pedicel is almost as long as the abdomen. The male palp is unusual, characterized by the transverse deeply split membranous tegulum separating a ventral part which bears a sclerotized tegular apophysis and a large dagger-like retrodirected median apophysis. The female epigyne consists of one pair of large adjacent spermathecae and very long copulatory ducts arising posteriorly and rising laterally alongside the spermathecae continuing in several vertical and horizontal coils over the anterior surface. Relationships within the Salticidae are discussed and an affinity with the Cocalodinae is suggested. Arguments are provided for a hypothesis that Depreissia decipiens is not ant-mimicking as was previously believed, but is a mimic of polistinine wasps. The species was found in the canopy in the Kinabalu area only, in primary and old secondary rainforest at 200-700 m.a.s.l. Overlap of canopy-dwelling spider species with those in the understorey are discussed and examples of species richness and endemism in the canopy are highlighted. Canopy fogging is a very efficient method of collecting for most arthropods. The canopy fauna adds an extra dimension to the known biodiversity of the tropical rainforest. In southeast Asia, canopy research has been neglected, inhibiting evaluation of comparative results of this canopy project with that from other regions. More use of fogging as a collecting method would greatly improve insight into the actual species richness and species distribution in general.
This study was carried out in an oil palm plantation in Tanjung Sepat, Selangor in September 2007 by using pigs (Sus scrofa L.) as a carcass model in a forensic entomological research. A 2.5 month old pig (10 kg) which died naturally was hanged on a palm tree to observe the insect succession and decomposition stages. Observation was made for 16 days; one afternoon visit per day and all climatological data were recorded. On the first day, adult muscids of Ophyra spinigera Stein and Musca domestica L. were observed, however no blowfly (Calliphoridae) activities were sighted. Fly eggs wer seen on the second day on both sides of the face, inside nostrils and genitourinary area. Adults of Chrysomya megacephala Fabricius and Chrysomya rufifacies (Macquart) congregated on the head and anal areas. Adult flies and maggots (first and second instars) were observed in the mouth and anus of the pig on the third day of hanging. Adult yellow jackets (Vespidae) and spiders (Arachnida) were found preying on some adult flies. Rove beetles (Staphilinidae) were also discovered on the pig carcass. Only a few ants (Formicidae) were sighted. Maggot masses were found in eye orbits, neck, and genital organs on the fourth day of hanging and some maggots were seen falling down to the ground. The dominant maggot species identified on this day was Ch. megacephala. On the sixth day, the head, neck, and anus were in the stage of active decay. Maggots of Ch. rufifacies were abundant on the seventh day and was the dominant species. On day eight the carcass fell onto the ground. Chrysomya rufifacies maggots were found underneath the pig carcass and they started to migrate and pupated under the soil. On the tenth day, third instar Op. spinigera maggots were found under the carcass. The rate of carcass decomposition slowed down and became stable from tenth day onwards to the sixteenth day of decomposition. Thereafter, most of the remaining parts of the body remained dried and devoid of any insects.