Displaying publications 4241 - 4260 of 6728 in total

Abstract:
Sort:
  1. Ahmad Ainuddin H, Romli MH, S F Salim M, Hamid TA, Mackenzie L
    PLoS One, 2023;18(1):e0279657.
    PMID: 36630460 DOI: 10.1371/journal.pone.0279657
    OBJECTIVE: A fall after a stroke is common but the consequences can be devastating not only for the stroke survivors, but also for caregivers, healthcare, and the society. However, research on falls prevention among the stroke population are limited, particularly on home hazards assessment and home modifications, demanding for a study to be conducted. The aim of the study is to validate the protocol and content of a home hazard management program guided by the Person-Environment-Occupation (PEO) Model for falls prevention among community dwelling stroke survivors.

    METHOD: Researchers developed their own questionnaire for content validation which consist of 23 items that covers two domains, namely justification for telehealth home hazard management practice and the protocol's overall methodology. Occupational therapists with at least one year of experience in conducting a home hazard assessment were consulted for the content validation of a two-group clinical controlled trial protocol utilizing a home hazard assessment, home modifications and education over the usual care. Written consent was obtained prior to the study. The occupational therapists were given a Google Form link to review the protocol and intervention based on the questionnaire and rated each item using a four-point Likert scale for relevance and feasibility. Open-ended feedback was also recorded on the google form. Content Validity Index (CVI), Modified Kappa Index and Cronbach's Alpha was calculated for the content validity and reliability analysis.

    RESULTS: A total of sixteen occupational therapists participated in the study. 43.7% of participants had a master's degree, 93.7% worked in the government sector and 56.2% had six years and more experience on conducting home hazard assessments. Content validity of the protocol is satisfactory for relevancy and feasibility (CVI = 0.84, ranging from 0.5 to 1.00), and for the reliability (α = 0.94 (relevance) and α = 0.97 (feasibility), respectively. The Modified Kappa ranged from 0.38 to 1.00 for all items. Feedback was also received regarding the design and procedure of the study protocol which included participant's selection criteria, sample size, equipment provided, cost, location, and care for the participants during the intervention.

    CONCLUSIONS: Introducing a home hazard management program to prevent falls among the stroke population is viewed relevant and feasible. Practical suggestions from the consultation panel were adopted, and minor adjustments were required to strengthen the protocol's overall methodology. This study established a rigorous and robust experimental protocol for future undertaking.

  2. Bin Suliman MA, Hanis TM, Kamdi MKA, Ibrahim MI, Musa KI
    PMID: 36901652 DOI: 10.3390/ijerph20054642
    Many stroke survivors suffer with varying degrees of disability and require assistance. Family members commonly act as informal caregivers, caring for these stroke survivors and ensuring care adherence. However, many caregivers reported a poor quality of life and physical and psychological distress. Due to these issues, multiple studies have been conducted to understand the experience of caregivers, the outcomes of caregiving, and interventional studies among caregivers. This study aims to explore the intellectual landscape of studies on stroke caregivers using bibliometric analysis. Studies with "stroke" and "caregiver" terms in the title were extracted from the Web of Sciences (WOS) database. The resulting publications were analysed using the 'bibliometrix' package in R. There were 678 publications analysed, dating from 1989 to 2022. The USA has the highest number of publications (28.6%), followed by China (12.1%) and Canada (6.1%). The most productive institution, journal and author were The University of Toronto (9.5%), 'Topics in Stroke Rehabilitation' journal (5.8%) and Tamilyn Bakas (3.1%), respectively. Co-occurrences keywords analysis revealed mainstream research on stroke survivors, burden, quality of life, depression, care, and rehabilitation, reflecting the timeless hotspot in the field. This bibliometric analysis helps us understand the current state of stroke caregiver research and its recent developments. This study can be used to evaluate research policies and promote international cooperation.
  3. Khokhar MF, Nisar M, Noreen A, Khan WR, Hakeem KR
    Environ Sci Pollut Res Int, 2017 Jan;24(3):2827-2839.
    PMID: 27838904 DOI: 10.1007/s11356-016-7907-3
    This study emphasizes on near surface observation of chemically active trace gases such as nitrogen dioxide (NO2) over Islamabad on a regular basis. Absorption spectroscopy using backscattered extraterrestrial light source technique was used to retrieve NO2 differential slant column densities (dSCDs). Mini multi-axis-differential optical absorption spectroscopy (MAX-DOAS) instrument was used to perform ground-based measurements at Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST) Islamabad, Pakistan. Tropospheric vertical column densities (VCDs) of NO2 were derived from measured dSCDs by using geometric air mass factor approach. A case study was conducted to identify the impact of different materials (glass, tinted glass, and acrylic sheet of various thicknesses used to cover the instrument) on the retrieval of dSCDs. Acrylic sheet of thickness 5 mm was found most viable option for casing material as it exhibited negligible impact in the visible wavelength range. Tropospheric NO2 VCD derived from ground-based mini MAX-DOAS measurements exceeded two times the Pak-NEQS levels and showed a reasonable comparison (r (2) = 0.65, r = 0.81) with satellite observations (root mean square bias of 39 %) over Islamabad, Pakistan.
  4. Nizamuddin S, Siddiqui MTH, Baloch HA, Mubarak NM, Griffin G, Madapusi S, et al.
    Environ Sci Pollut Res Int, 2018 Jun;25(18):17529-17539.
    PMID: 29663294 DOI: 10.1007/s11356-018-1876-7
    The process parameters of microwave hydrothermal carbonization (MHTC) have significant effect on yield of hydrochar. This study discusses the effect of process parameters on hydrochar yield produced from MHTC of rice husk. Results revealed that, over the ranges tested, a lower temperature, lower reaction time, lower biomass to water ratio, and higher particle size produce more hydrochar. Maximum hydrochar yield of 62.8% was obtained at 1000 W, 220 °C, and 5 min. The higher heating value (HHV) was improved significantly from 6.80 MJ/kg of rice husk to 16.10 MJ/kg of hydrochar. Elemental analysis results showed that the carbon content increased and oxygen content decreased in hydrochar from 25.9 to 47.2% and 68.5 to 47.0%, respectively, improving the energy and combustion properties. SEM analysis exhibited modification in structure of rice husk and improvement in porosity after MHTC, which was further confirmed from BET surface analysis. The BET surface area increased from 25.0656 m2/g (rice husk) to 92.6832 m2/g (hydrochar). Thermal stability of hydrochar was improved from 340 °C for rice husk to 370 °C for hydrochar.
  5. Mohammed AMA, Mohd Yunus NZ, Hezmi MA, A Rashid AS, Horpibulsuk S
    Environ Sci Pollut Res Int, 2021 Oct;28(40):57308-57320.
    PMID: 34086175 DOI: 10.1007/s11356-021-14718-4
    Proposals have been made by several researchers to conduct the sequestration of carbon dioxide (CO2) through calcium and magnesium-rich materials. From these materials, ground granulated blast furnace slag (GGBS) containing 5% magnesium and 45% calcium is seen to be a good candidate and is available to sequester CO2. This study intends to ascertain the ability to absorb CO2, sequester it, and increase treated kaolin strength with different content of GGBS under various carbonation periods with varying CO2 pressure. The impacts of carbonated GGBS on the mechanical attributes of soil were examined by conducting the unconfined compressive strength (UCS) test, and microstructure analysis was conducted to identify the changes in the structure and Crestline phase. Stationary carbonation in a triaxial test with pure CO2 was conducted to accelerate the carbonation process. The outcome indicates that the strength rises as the carbonation period rises. Likewise, UCS rises as the CO2 pressure rises from 100 to 200 kPa. It could be concluded that augmentation of the strength is because of carbonated calcium and magnesium products which stuff the soil voids. Changes occur on the microstructure level due to carbonation as well.
  6. Mat-Shayuti MS, Tuan Ya TMYS, Abdullah MZ, Othman NH, Alias NH
    Environ Sci Pollut Res Int, 2021 Nov;28(41):58081-58091.
    PMID: 34106401 DOI: 10.1007/s11356-021-14776-8
    Despite the potential shown by previous investigations on the use of ultrasound for the remediation of oil-contaminated sand, the influence and interactions among ultrasonic parameters and oily sand are unclear, leading to possible ineffective treatment and high-power consumption. In order to improve the process efficiency, this work analyzes the effects of ultrasonic power, frequency, and load toward the cleaning of crude oil-contaminated sand, using two different sample positions and sand types. Crude oil-contaminated beach sand and produced sand from offshore oil well were used as samples. They were cleaned in custom-made ultrasonic bath reactor for 10 min with power from 30 to 120 W, frequency covering 25-60 kHz, and sand load of 10-100 g. With experimental design consisting multiple factors and levels, the interactions between factors in all possible combinations were determined using ANOVA (n = 210). From p-value based at 95% confidence interval and extensive F test, the three most significant factors were the sand type, the ultrasonic frequency, and the interaction between sand type and frequency. The best setting for suspended samples involved high frequency of 60 kHz, whereas bottom samples preferred low frequency at 28 kHz. This finding was justified when the acoustic pressure attenuation, standing wave pattern, and surface pitting/cracking were found in correlation with the cleaning results. Overall, the maximum treatment under ultrasonic bath solely gained around 60%, improvable by hybrid cleaning with other techniques such as chemical, biological, mechanical, and thermal.
  7. Kusin FM, Rahman MS, Madzin Z, Jusop S, Mohamat-Yusuff F, Ariffin M, et al.
    Environ Sci Pollut Res Int, 2017 Jan;24(2):1306-1321.
    PMID: 27771881 DOI: 10.1007/s11356-016-7814-7
    Recent bauxite mining activities in the vicinity of Kuantan, Pahang, have been associated with apparent environmental quality degradation and have raised environmental concerns among the public. This study was carried out to evaluate the overall ecological impacts on water and sediment quality from the bauxite mining activities. Water and sediment samples were collected at seven sampling locations within the bauxite mining areas between June and December 2015. The water samples were analyzed for water quality index (WQI) and distribution of major and trace element geochemistry. Sediment samples were evaluated based on geochemical indices, i.e., the enrichment factor (EF) and geoaccumulation index (I geo). Potential ecological risk index was estimated to assess the degree to which sediments of the mine-impacted areas have been contaminated with heavy metals. The results showed that WQIs of some locations were classified as slightly polluted and contained metal contents exceeding the recommended guideline values. The EFs indicated minimal to moderate enrichment of metals (Pb, Cu, Zn, Mn, As, Cd, Cr, Ni, Co, and Sr) in the sediments. I geo showed slightly to partially polluted sediments with respect to As at some locations. The potential ecological risk index (RI) showed that As posed the highest potential ecological risk with RI of 52.35-60.92 at two locations, while other locations indicated low risk. The findings from this study have demonstrated the impact of recent bauxite mining activities, which might be of importance to the local communities and relevant authorities to initiate immediate rehabilitation phase of the impacted area.
  8. Ahmad NF, Kamboh MA, Nodeh HR, Halim SNBA, Mohamad S
    Environ Sci Pollut Res Int, 2017 Sep;24(27):21846-21858.
    PMID: 28776296 DOI: 10.1007/s11356-017-9820-9
    The present work describes the successful functionalization/magnetization of bio-polymeric spores of Lycopodium clavatum (sporopollenin) with 1-(2-hydroxyethyl) piperazine. Analytical techniques, i.e., Fourier transform infrared (FT-IR), field emission scanning electron microscope (FESEM), energy-dispersive X-ray spectroscopy (EDS), and vibrating sample magnetometer (VSM), were used to confirm the formation of 1-(2-hydroxyethyl) piperazine-functionalized magnetic sporopollenin (MNPs-Sp-HEP). The proposed adsorbent (MNPs-Sp-HEP) was used for the removal of noxious Pb(II) and As(III) metal ions from aqueous media through a batch-wise method. Different experimental parameters were optimized for the effective removal of selected noxious metal ions. Maximum adsorption capacity (q m ) 13.36 and 69.85 mg g-1 for Pb(II) and As(III), respectively, were obtained. Thermodynamic parameters such as free energy (ΔG°), entropy (ΔS°), and enthalpy (ΔH°) were also studied from the adsorption results and were used to elaborate the mechanism of their confiscation. The obtained results indicated that newly adsorbent can be successfully applied for the decontamination of noxious Pb(II) and As(III) from the aqueous environment.
  9. Shair F, Shaorong S, Kamran HW, Hussain MS, Nawaz MA, Nguyen VC
    Environ Sci Pollut Res Int, 2021 Apr;28(16):20822-20838.
    PMID: 33405126 DOI: 10.1007/s11356-020-11938-y
    This paper investigates the efficiency and total factor productivity (TFP) growth of the Pakistani banking industry and determines the impact of risk and competition on the efficiency and TFP growth. The data envelopment analysis (DEA)-based Malmquist productivity index is used to measure efficiency and TFP growth of the Pakistani banking industry. The generalized method of moments (GMM) model is applied to observe the impact of risk and competition on efficiency and TFP growth. The motivation behind the use of GMM model is its ability to overcome unobserved heterogeneity, autocorrelation, and endogeneity issues. The results of the study show that the credit and liquidity risks have positive while insolvency risk has negative effect on the efficiency and TFP growth. The competition leads to improve technological efficiency but declines the technical efficiency growth. Among other explanatory variables, operational cost management, banking sector development, GDP growth rate, and infrastructure development show significant relationships with various efficiencies and TFP growth. The banks also facilitate for the purchase of carbon-intensive products in order to reduce carbon emissions. Strong banking development successfully allocate their financial resources for the development of energy-efficient technology while banking sector development is found to be negatively related with environmental sustainability. The strong banking sector possesses a significant negative influence on carbon reduction and environmental degradation.
  10. Van Song N, Phuong NTM, Oanh TTK, Chien DH, Phuc VQ, Mohsin M
    Environ Sci Pollut Res Int, 2021 Apr;28(16):19911-19925.
    PMID: 33410000 DOI: 10.1007/s11356-020-12041-y
    The study tries to discover the impact of financial and social indicators' growth towards environmental considerations to understand the drivers of economic growth and carbon dioxide emissions change in G7 countries. The DEA-like composite index has been used to examine the tradeoff between financial and social indicator matters in environmental consideration by using a multi-objective goal programming approach. The data from 2008 to 2018 is collected from G-7 countries. The results from the DEA-like composite index reveals that there is a mixed condition of environmental sustainability in G-7 countries where the USA is performing better and Japan is performing worse among the set of other countries. The further result shows that the energy and fiscal indicators help to decrease the dangerous gas emissions. Divergent to that, the human and financial index positively contributes to greenhouse gas emissions. Fostering sustainable development is essential to successfully reduce emissions, meet established objectives, and ensure steady development. The study provides valuable information for policymakers.
  11. Nawaz MA, Hussain MS, Kamran HW, Ehsanullah S, Maheen R, Shair F
    Environ Sci Pollut Res Int, 2021 Apr;28(13):16014-16028.
    PMID: 33245544 DOI: 10.1007/s11356-020-11823-8
    Recent research has shown a huge impact of non-renewable energy (NRE) production on environmental health. In this context, this work analyzes the effects of GDP growth and long- and short-term consumption of renewable and non-renewable energy (RE and NRE, respectively) on carbon emission in BRICS and OECD economies. The quantile autoregressive distributed lag (QARDL) model was employed on the panel data from 1980 to 2016. Findings suggest a negative GDP-carbon emission correlation and a positive NRE-carbon emission correlation in the considered economies. Furthermore, carbon emission decreases with increase in gross capital formation, whereas trade openness does not have any significant effect on carbon emission. It has been determined that the application of the error correction method (ECM) has less effect on energy consumption as compared to the past levels and changes in energy consumption. In the long-term, a positive correlation of carbon emission and energy consumption is observed, whereas limited short-term effects of energy consumption on carbon emission are observed. Therefore, an RE-based energy production approach is recommended in the selected region for the future projects.
  12. Nawaz MA, Seshadri U, Kumar P, Aqdas R, Patwary AK, Riaz M
    Environ Sci Pollut Res Int, 2021 Feb;28(6):6504-6519.
    PMID: 32997248 DOI: 10.1007/s11356-020-10920-y
    Green finance is inextricably linked to investment risk, particularly in emerging and developing economies (EMDE). This study uses the difference in differences (DID) method to evaluate the mean causal effects of a treatment on an outcome of the determinants of scaling up green financing and climate change mitigation in the N-11 countries from 2005 to 2019. After analyzing with a dummy for the treated countries, it was confirmed that the outcome covariates: rescon (renewable energy sources consumption), population, FDI, CO2, inflation, technical corporation grants, domestic credit to the private sector, and research and development are very significant in promoting green financing and climate change mitigation in the study countries. The probit regression results give a different outcome, as rescon, FID, CO2, Human Development Index (HDI), and investment in the energy sector by the private sector that will likely have an impact on the green financing and climate change mitigation of the study countries. Furthermore, after matching the analysis through the nearest neighbor matching, kernel matching, and radius matching, it produced mixed results for both the treated and the untreated countries. Either group experienced an improvement in green financing and climate change mitigation or a decrease. Overall, the DID showed no significant difference among the countries.
  13. Meirun T, Mihardjo LW, Haseeb M, Khan SAR, Jermsittiparsert K
    Environ Sci Pollut Res Int, 2021 Jan;28(4):4184-4194.
    PMID: 32935214 DOI: 10.1007/s11356-020-10760-w
    For an economy to excel in growth, there is usually a trade-off between financial development and environment deterioration. For a country like Singapore, which has shown a radical growth and is known for its population density, it is important to explore the role of green technology innovation in the pursuit of economic excellence with the least possible cost to the environment. By employing the novel bootstrap autoregressive-distributed lag (BARDL) technique using a time series data from 1990 to 2018, the results reported a positive and significant relationship of green technology innovation with economic growth and negative and significant relationship with carbon emissions in both long run and short run. Based on the findings, several managerial implications were discussed, whereas based on the limitations, directions for future researchers are also given.
  14. Jusoh N, Rosly MB, Othman N, Rahman HA, Noah NFM, Sulaiman RNR
    Environ Sci Pollut Res Int, 2020 Jun;27(18):23246-23257.
    PMID: 32335833 DOI: 10.1007/s11356-020-07972-5
    Polluted sterilization condensate discharged from palm oil mill may contain polyphenols that are rich in the antioxidant property. Emulsion liquid membrane (ELM) process is a promising method for polyphenol recovery due to its several attractive features such as high selectivity, simple operation, and low energy consumption. In this study, the condensate was characterized to determine its total phenolic content (TPC), ionic elements, and pH. ELM formulation containing tributylphosphate (TBP) as a carrier, kerosene as a diluent, sorbitan monooleate (Span 80) as a surfactant, and sodium hydroxide (NaOH) as a stripping agent was developed. The results show that sterilization condensate contains 700-1500 mg GAE/L of TPC. During the ELM process, more than 91% of extraction with 83% recovery and 8.3 enrichment were achieved at the favorable condition of 0.1 M TBP, external phase pH 5, 1 M NaOH, 1:5 treat ratio, 5% v/v of octanol as a modifier, and 100 mg GAE/L external phase concentrations. Thus, ELM offers a potential alternative technology to extract and recover polyphenols from palm oil mill sterilization condensate while contributing to sustainable production. Graphical abstract Extraction of polyphenols from palm oil mill sterilization condensate using ELM process.
  15. Raza SA, Qureshi MA, Ahmed M, Qaiser S, Ali R, Ahmed F
    Environ Sci Pollut Res Int, 2021 Jan;28(2):1426-1442.
    PMID: 32840747 DOI: 10.1007/s11356-020-10179-3
    The study aims to analyze two objectives: first is to explore the non-linear relationship between tourism development, economic growth, urbanization, and environmental degradation, and also to analyze the threshold level of the contribution of tourism development on environmental degradation in top tourist arrival destinations. We applied the newly proposed econometric method panel smooth transition regression (PSTR) framework with two regimes on yearly panel data from 1995 to 2017. Findings suggest that the relationship between tourism development and environmental degradation is non-linear and regime dependent. Furthermore, the findings indicated that the relationship above the threshold level is negative and significant, while below the threshold, tourism development is positive and significant effect on environmental degradation. Tourism development and environmental degradation also exhibit the inverted U-shape relationship meaning that at a particular point, increase in tourism development increases in environmental degradation but after a particular point, increase in tourism development decreases the environmental degradation. The economic growth and urbanization also portray a non-linear and regime-dependent relationship with environmental degradation. The study assists policies and empirical information.
  16. Kusin FM, Hasan SNMS, Hassim MA, Molahid VLM
    Environ Sci Pollut Res Int, 2020 Apr;27(11):12767-12780.
    PMID: 32008190 DOI: 10.1007/s11356-020-07877-3
    This study highlights the importance of mineralogical composition for potential carbon dioxide (CO2) capture and storage of mine waste materials. In particular, this study attempts to evaluate the role of mineral carbonation of sedimentary mine waste and their potential reutilization as supplementary cementitious material (SCM). Limestone and gold mine wastes were recovered from mine processing sites for their use as SCM in brick-making and for evaluation of potential carbon sequestration. Dominant minerals in the limestone mine waste were calcite and akermanite (calcium silicate) while the gold mine waste was dominated by illite (iron silicate) and chlorite-serpentine (magnesium silicate). Calcium oxide, CaO and silica, SiO2, were the highest composition in the limestone and gold mine waste, respectively, with maximum CO2 storage of between 7.17 and 61.37%. Greater potential for CO2 capture was observed for limestone mine waste as due to higher CaO content alongside magnesium oxide. Mineral carbonation of the limestone mine waste was accelerated at smaller particle size of
  17. Pudza MY, Abidin ZZ, Abdul-Rashid S, Yasin FM, Noor ASM, Abdullah J
    Environ Sci Pollut Res Int, 2020 Apr;27(12):13315-13324.
    PMID: 32020456 DOI: 10.1007/s11356-020-07695-7
    The need for the sensing of environmental pollutants cannot be overemphasized in the twenty-first century. Herein, a sensor has been developed for the sensitive and selective detection of copper (Cu2+), lead (Pb2+) and cadmium (Cd2+) as major heavy metals polluting water environment. A screen-printed carbon electrode (SPCE) modified by fluorescent carbon dots (CDs) and gold nanoparticles (AuNPs) was successfully fabricated for sensing Cu2+, Pb2+ and Cd2+. Differential pulse voltammetry (DPV) and cyclic voltammetry (CV) were deployed for the analysis of ternary analytes. CV was set at a potential range of - 0.8 to + 0.2 V at a scan rate of 100 mV/s, and DPV at a potential range of - 0.8 to + 0.1 V, scan rate of 50 mV/s, pulse rate of 0.2 V and pulse width of 50 ms. DPV technique was applied through the modified electrode for sensitive and selective determination of Cu2+, Pb2+ and Cd2+ at a concentration range of 0.01 to 0.27 ppm for Cu2+, Pb2+ and Cd2+. Tolerance for the highest possible concentration of foreign substances such as Mg2+, K+, Na+, NO3-, and SO42- was observed with a relative error less than ± 3%. The sensitivity of the modified electrode was at 0.17, 0.42 and 0.18 ppm for Cd2+, Pb2+ and Cu2+, respectively, while the limits of detection (LOD) achieved for cadmium, lead and copper were 0.0028, 0.0042 and 0.014 ppm, respectively. The quality of the modified electrode for sensing Cu2+, Pb2+ and Cd2+ at trace levels is in accordance with the World Health Organization (WHO) and Environmental Protection Agency (EPA) water regulation standard. The modified SPCE provides a cost-effective, dependable and stable means of detecting heavy metal ions (Cu2+, Pb2+ and Cd2+) in an aqueous solution. Graphical abstract .
  18. Qureshi MI, Rasli AM, Awan U, Ma J, Ali G, Faridullah, et al.
    Environ Sci Pollut Res Int, 2015 Mar;22(5):3467-76.
    PMID: 25242593 DOI: 10.1007/s11356-014-3584-2
    The objective of the study is to establish the link between air pollution, fossil fuel energy consumption, industrialization, alternative and nuclear energy, combustible renewable and wastes, urbanization, and resulting impact on health services in Malaysia. The study employed two-stage least square regression technique on the time series data from 1975 to 2012 to possibly minimize the problem of endogeniety in the health services model. The results in general show that air pollution and environmental indicators act as a strong contributor to influence Malaysian health services. Urbanization and nuclear energy consumption both significantly increases the life expectancy in Malaysia, while fertility rate decreases along with the increasing urbanization in a country. Fossil fuel energy consumption and industrialization both have an indirect relationship with the infant mortality rate, whereas, carbon dioxide emissions have a direct relationship with the sanitation facility in a country. The results conclude that balancing the air pollution, environment, and health services needs strong policy vistas on the end of the government officials.
  19. Kura NU, Ramli MF, Ibrahim S, Sulaiman WN, Aris AZ, Tanko AI, et al.
    Environ Sci Pollut Res Int, 2015 Jan;22(2):1512-33.
    PMID: 25163562 DOI: 10.1007/s11356-014-3444-0
    In this work, the DRASTIC and GALDIT models were employed to determine the groundwater vulnerability to contamination from anthropogenic activities and seawater intrusion in Kapas Island. In addition, the work also utilized sensitivity analysis to evaluate the influence of each individual parameter used in developing the final models. Based on these effects and variation indices of the said parameters, new effective weights were determined and were used to create modified DRASTIC and GALDIT models. The final DRASTIC model classified the island into five vulnerability classes: no risk (110-140), low (140-160), moderate (160-180), high (180-200), and very high (>200), covering 4, 26, 59, 4, and 7 % of the island, respectively. Likewise, for seawater intrusion, the modified GALDIT model delineates the island into four vulnerability classes: very low (<90), low (90-110), moderate (110-130), and high (>130) covering 39, 33, 18, and 9 % of the island, respectively. Both models show that the areas that are likely to be affected by anthropogenic pollution and seawater intrusion are within the alluvial deposit at the western part of the island. Pearson correlation was used to verify the reliability of the two models in predicting their respective contaminants. The correlation matrix showed a good relationship between DRASTIC model and nitrate (r = 0.58). In a similar development, the correlation also reveals a very strong negative relationship between GALDIT model and seawater contaminant indicator (resistivity Ωm) values (r = -0.86) suggesting that the model predicts more than 86 % of seawater intrusion. In order to facilitate management strategy, suitable areas for artificial recharge were identified through modeling. The result suggested some areas within the alluvial deposit at the western part of the island as suitable for artificial recharge. This work can serve as a guide for a full vulnerability assessment to anthropogenic pollution and seawater intrusion in small islands and will help policy maker and manager with understanding needed to ensure sustainability of the island's aquifer.
  20. Ahmed A, Masud MM, Al-Amin AQ, Yahaya SR, Rahman M, Akhtar R
    Environ Sci Pollut Res Int, 2015 Jun;22(12):9494-504.
    PMID: 25613801 DOI: 10.1007/s11356-015-4110-x
    This study empirically estimates farmers' willingness to pay (WTP) for a planned adaptation programme for addressing climate issues in Pakistan's agricultural sectors. The contingent valuation method (CVM) was employed to determine a monetary valuation of farmers' preferences for a planned adaptation programme by ascertaining the value attached to address climatic issues. The survey was conducted by distributing structured questionnaires among Pakistani farmers. The study found that 67 % of respondents were willing to pay for a planned adaptation programme. However, several socioeconomic and motivational factors exert greater influence on their willingness to pay (WTP). This paper specifies the steps needed for all institutional bodies to better address issues in climate change. The outcomes of this paper will support attempts by policy makers to design an efficient adaptation framework for mitigating and adapting to the adverse impacts of climate change.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links