Displaying publications 41 - 44 of 44 in total

Abstract:
Sort:
  1. Ghorbani M, Kianmehr MH, Sarlaki E, Angelidaki I, Yang Y, Tabatabaei M, et al.
    Sci Total Environ, 2023 Sep 20;892:164526.
    PMID: 37257609 DOI: 10.1016/j.scitotenv.2023.164526
    The livestock industry needs to use crop straws that are highly digestible to improve feed productivity and reduce ruminal methane emissions. Hence, this study aimed to use the ozonation and pelleting processes to enhance the digestibility and reduce the ruminal methane emissions of wheat straw enriched with two nitrogen sources (i.e., urea and heat-processed broiler litter). Various analyses were conducted on the pellets, including digestibility indicators, mechanical properties, surface chemistry functionalization, chemical-spectral-structural features, and energy requirements. For comparison, loose forms of the samples were also analyzed. The nitrogen-enriched ozonated wheat straw pellets had 43.06 % lower lignin, 28.30 % higher gas production for 24 h, 12.28 % higher metabolizable energy, 13.78 % higher in vitro organic matter digestibility for 24 h, and 28.81 % higher short-chain fatty acid content than the nitrogen-enriched loose sample. The reduction of methane emissions by rumen microorganisms of nitrogen-enriched wheat straw by ozonation, pelleting, and ozonation-pelleting totaled 89.15 %, 23.35 %, and 66.98 %, respectively. The ozonation process resulted in a 64 % increase in the particle density, a 5.5-time increase in the tensile strength, and a 75 % increase in the crushing energy of nitrogen-enriched wheat straw. In addition, ozone treatment could also reduce the specific and thermal energy consumption required in the pelleting process by 15.10 % and 7.61 %, respectively.
  2. Kiehbadroudinezhad M, Hosseinzadeh-Bandbafha H, Karimi K, Madadi M, Chisti Y, Peng W, et al.
    Sci Total Environ, 2023 Nov 15;899:165751.
    PMID: 37499830 DOI: 10.1016/j.scitotenv.2023.165751
    Life cycle assessment was used to evaluate the environmental impacts of phytoplanktonic biofuels as possible sustainable alternatives to fossil fuels. Three scenarios were examined for converting planktonic biomass into higher-value commodities and energy streams using the alga Scenedesmus sp. and the cyanobacterium Arthrospira sp. as the species of interest. The first scenario (Sc-1) involved the production of biodiesel and glycerol from the planktonic biomass. In the second scenario (Sc-2), biodiesel and glycerol were generated from the planktonic biomass, and biogas was produced from the residual biomass. The process also involved using a catalyst derived from snail shells for biodiesel production. The third scenario (Sc-3) was similar to Sc-2 but converted CO2 from the biogas upgrading to methanol, which was then used in synthesizing biodiesel. The results indicated that Sc-2 and Sc-3 had a reduced potential (up to 60 % less) for damaging human health compared to Sc-1. Sc-2 and Sc-3 had up to 61 % less environmental impact than Sc-1. Sc-2 and Sc-3 reduced the total cumulative exergy demand by up to 44 % compared to Sc-1. In conclusion, producing chemicals and utilities within the biorefinery could significantly improve environmental sustainability, reduce waste, and diversify revenue streams.
  3. He Y, Kiehbadroudinezhad M, Hosseinzadeh-Bandbafha H, Gupta VK, Peng W, Lam SS, et al.
    Environ Pollut, 2024 Feb 01;342:123081.
    PMID: 38072018 DOI: 10.1016/j.envpol.2023.123081
    E-waste, encompassing discarded materials from outdated electronic equipment, often ends up intermixed with municipal solid waste, leading to improper disposal through burial and incineration. This improper handling releases hazardous substances into water, soil, and air, posing significant risks to ecosystems and human health, ultimately entering the food chain and water supply. Formal e-waste recycling, guided by circular economy models and zero-discharge principles, offers potential solutions to this critical challenge. However, implementing a circular economy for e-waste management due to chemical and energy consumption may cause environmental impacts. Consequently, advanced sustainability assessment tools, such as Life Cycle Assessment (LCA), have been applied to investigate e-waste management strategies. While LCA is a standardized methodology, researchers have employed various routes for environmental assessment of different e-waste management methods. However, to the authors' knowledge, there lacks a comprehensive study focusing on LCA studies to discern the opportunities and limitations of this method in formal e-waste management strategies. Hence, this review aims to survey the existing literature on the LCA of e-waste management under a circular economy, shedding light on the current state of research, identifying research gaps, and proposing future research directions. It first explains various methods of managing e-waste in the circular economy. This review then evaluates and scrutinizes the LCA approach in implementing the circular bioeconomy for e-waste management. Finally, it proposes frameworks and procedures to enhance the applicability of the LCA method to future e-waste management research. The literature on the LCA of e-waste management reveals a wide variation in implementing LCA in formal e-waste management, resulting in diverse results and findings in this field. This paper underscores that LCA can pinpoint the environmental hotspots for various pathways of formal e-waste recycling, particularly focusing on metals. It can help address these concerns and achieve greater sustainability in e-waste recycling, especially in pyrometallurgical and hydrometallurgical pathways. The recovery of high-value metals is more environmentally justified compared to other metals. However, biometallurgical pathways remain limited in terms of environmental studies. Despite the potential for recycling e-waste into plastic or glass, there is a dearth of robust background in LCA studies within this sector. This review concludes that LCA can offer valuable insights for decision-making and policy processes on e-waste management, promoting environmentally sound e-waste recycling practices. However, the accuracy of LCA results in e-waste recycling, owing to data requirements, subjectivity, impact category weighting, and other factors, remains debatable, emphasizing the need for more uncertainty analysis in this field.
  4. Fardi Z, Shahbeik H, Nosrati M, Motamedian E, Tabatabaei M, Aghbashlo M
    Environ Res, 2024 Feb 01;242:117614.
    PMID: 37996005 DOI: 10.1016/j.envres.2023.117614
    Waste-to-energy conversion presents a pivotal strategy for mitigating the energy crisis and curbing environmental pollution. Pyrolysis is a widely embraced thermochemical approach for transforming waste into valuable energy resources. This study delves into the co-pyrolysis of terrestrial biomass (potato peel) and marine biomass (Sargassum angastifolium) to optimize the quantity and quality of the resultant bio-oil and biochar. Initially, thermogravimetric analysis was conducted at varying heating rates (5, 20, and 50 °C/min) to elucidate the thermal degradation behavior of individual samples. Subsequently, comprehensive analyses employing FTIR, XRD, XRF, BET, FE-SEM, and GC-MS were employed to assess the composition and morphology of pyrolysis products. Results demonstrated an augmented bio-oil yield in mixed samples, with the highest yield of 27.1 wt% attained in a composition comprising 75% potato peel and 25% Sargassum angastifolium. As confirmed by GC-MS analysis, mixed samples exhibited reduced acidity, particularly evident in the bio-oil produced from a 75% Sargassum angastifolium blend, which exhibited approximately half the original acidity. FTIR analysis revealed key functional groups on the biochar surface, including O-H, CO, and C-O moieties. XRD and XRF analyses indicated the presence of alkali and alkaline earth metals in the biochar, while BET analysis showed a surface area ranging from 0.64 to 1.60 m2/g. The favorable characteristics of the products highlight the efficacy and cost-effectiveness of co-pyrolyzing terrestrial and marine biomass for the generation of biofuels and value-added commodities.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links