Displaying publications 41 - 51 of 51 in total

Abstract:
Sort:
  1. Nizam ZM, Abdul Aziz AA, Kaur G, Abu Hassan MR, Mohd Sidek AS, Yeh LY, et al.
    Asian Pac J Cancer Prev, 2013;14(2):619-24.
    PMID: 23621208
    BACKGROUND: Colorectal cancer (CRC) exists in a more common sporadic form and less common hereditary forms, associated with the Lynch syndrome, familial adenomatous polyposis (FAP) and other rare syndromes. Sporadic CRC is believed to arise as a result of close interaction between environmental factors, including dietary and lifestyle habits, and genetic predisposition factors. In contrast, hereditary forms such as those related to the Lynch syndrome result from inheritance of germline mutations of mismatch repair (MMR) genes. However, in certain cases, the influence of low penetrance alleles in familial colorectal cancer susceptibility is also undeniable.

    AIM: To investigate the genotype frequencies of MLH1 promoter polymorphism -93G>A and to determine whether it could play any role in modulating familial and sporadic CRC susceptibility risk.

    METHODS: A case-control study comprising of 104 histopathologically confirmed CRC patients as cases (52 sporadic CRC and 52 Lynch syndrome patients) and 104 normal healthy individuals as controls was undertaken. DNA was extracted from peripheral blood and the polymorphism was genotyped employing PCR-RFLP methods. The genotypes were categorized into homozygous wild type, heterozygous and homozygous variants. The risk association between these polymorphisms and CRC susceptibility risk was calculated using binary logistic regression analysis and deriving odds ratios (ORs).

    RESULTS: When risk association was investigated for all CRC patients as a single group, the heterozygous (G/A) genotype showed a significantly higher risk for CRC susceptibility with an OR of 2.273, (95%CI: 1.133-4.558 and p-value=0.021). When analyzed specifically for the 2 types of CRC, the heterozygous (G/A) genotype showed significantly higher risk for sporadic CRC susceptibility with and OR of 3.714, (95%CI: 1.416-9.740 and p-value=0.008). Despite high OR value was observed for Lynch syndrome (OR: 1.600, 95%CI: 0.715-3.581), the risk was not statistically significant (P=0.253).

    CONCLUSION: Our results suggest an influence of MLH1 promoter polymorphism -93G>A in modulating susceptibility risk in Malaysian CRC patients, especially those with sporadic disease.

  2. Aizat AA, Shahpudin SN, Mustapha MA, Zakaria Z, Sidek AS, Abu Hassan MR, et al.
    Asian Pac J Cancer Prev, 2011;12(11):2909-13.
    PMID: 22393962
    BACKGROUND: Colorectal cancer (CRC) results from the interaction between environmental exposures and genetic predisposition factors.

    AIMS: A case control study was designed and to investigate the genotype frequencies of P53Arg72Pro polymorphism in Malaysian CRC patients and healthy controls and to determine the associated risk of this polymorphism with CRC predisposition.

    METHODS: In this case-control study, peripheral blood samples of 202 sporadic CRC patients and 201 normal controls were collected, DNA extracted and genotyped using the polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP) technique.

    RESULTS: Genotype analysis showed the frequency of homozygous variant (Pro/Pro) genotype (21%) to be significantly higher in cases compared to controls (13%), (p=0.013). On examining the association between variant genotypes and CRC risk, the Pro/Pro homozygous variant genotype showed significantly higher risk association with CRC susceptibility (OR: 2.047, CI: 1.063-4.044, p=0.033). When stratified according to age, we observed that, individuals aged above 50 years and carriers of pro/pro genotype had significantly higher risk with OR: 3.642, CI: 1.166-11.378, p=0.026.

    CONCLUSIONS: Our results suggest that the codon 72 SNP which results in amino acid substitution of Arginine to Proline in cell cycle regulatory gene P53, is associated with sporadic CRC risk and carriers of Pro/Pro genotype and more than 50 years old may have high susceptibility.
  3. Marini M, Salmi AA, Watihayati MS, SMardziah MD, Zahri MK, Hoh BP, et al.
    Med J Malaysia, 2008 Mar;63(1):31-4.
    PMID: 18935728 MyJurnal
    Duchenne Muscular Dystrophy (DMD) is an X-linked recessive genetic disorder characterized by rapidly progressive muscle weakness. The disease is caused by deletion, duplication or point mutation of the dystrophin gene, located on the X chromosome (Xp21). Deletion accounts for 60% of the mutations within the 79 exons of the dystrophin gene. Seven exons (43, 44, 45, 46, 49, 50, and 51) were found to be most commonly deleted among the Asian patients. To detect the frequency of deletion of these 7 exons in Malaysian DMD patients, we carried out a molecular genetic analysis in 20 Malaysian DMD patients. The mean age of initial presentation was 60 months (SD 32 months, range 5-120 months). Fourteen patients were found to have deletion of at least one of the seven exons. The remaining six patients did not show any deletion on the tested exons. Deletions of exons 49, 50 and 51 were the most frequent (71.43%) and appear to be the hot spots in our cohort of patients.
  4. Elias MH, Baba AA, Husin A, Sulong S, Hassan R, Sim GA, et al.
    Biomed Res Int, 2013;2013:129715.
    PMID: 23484077 DOI: 10.1155/2013/129715
    Development of resistance to imatinib mesylate (IM) in chronic myeloid leukemia (CML) patients has emerged as a significant clinical problem. The observation that increased epigenetic silencing of potential tumor suppressor genes correlates with disease progression in some CML patients treated with IM suggests a relationship between epigenetic silencing and resistance development. We hypothesize that promoter hypermethylation of HOXA4 could be an epigenetic mechanism mediating IM resistance in CML patients. Thus a study was undertaken to investigate the promoter hypermethylation status of HOXA4 in CML patients on IM treatment and to determine its role in mediating resistance to IM. Genomic DNA was extracted from peripheral blood samples of 95 CML patients (38 good responders and 57 resistant) and 12 normal controls. All samples were bisulfite treated and analysed by methylation-specific high-resolution melt analysis. Compared to the good responders, the HOXA4 hypermethylation level was significantly higher (P = 0.002) in IM-resistant CML patients. On comparing the risk, HOXA4 hypermethylation was associated with a higher risk for IM resistance (OR 4.658; 95% CI, 1.673-12.971; P = 0.003). Thus, it is reasonable to suggest that promoter hypermethylation of HOXA4 gene could be an epigenetic mechanism mediating IM resistance in CML patients.
  5. Elias MH, Baba AA, Husin A, Abdullah AD, Hassan R, Sim GA, et al.
    Hematol Rep, 2012 Nov 19;4(4):e23.
    PMID: 23355941 DOI: 10.4081/hr.2012.e23
    Development of resistance to imatinib mesylate (IM) in chronic myeloid leukemia (CML) patients is mediated by different mechanisms that can be classified as BCR-ABL dependent or BCR-ABL independent pathways. BCR-ABL dependent mechanisms are most frequently associated with point mutations in tyrosine kinase domain (TKD) of BCR-ABL1 and also with BCR-ABL gene amplification. Many different types and frequencies of mutations have been reported in different studies, probably due to the different composition of study cohorts. Since no reports are available from Malaysia, this study was undertaken to investigate the frequency and pattern of BCR-ABL kinase domain mutations using dHPLC followed by sequencing, and also status of BCR-ABL gene amplification using fluorescence in situ hybridization (FISH) on 40 IM resistant Malaysian CML patients. Mutations were detected in 13 patients (32.5%). Five different types of mutations (T315I, E255K, Y253H, M351T, V289F) were identified in these patients. In the remaining 27 IM resistant CML patients, we investigated the contribution made by BCR-ABL gene amplification, but none of these patients showed amplification. It is presumed that the mechanisms of resistance in these 27 patients might be due to BCR-ABL independent pathways. Different mutations confer different levels of resistance and, therefore, detection and characterization of TKD mutations is highly important in order to guide therapy in CML patients.
  6. Abdul Aziz AA, Md Salleh MS, Mohamad I, Krishna Bhavaraju VM, Mazuwin Yahya M, Zakaria AD, et al.
    J Genet, 2018 Dec;97(5):1185-1194.
    PMID: 30555068
    Triple negative breast cancer (TNBC) is typically associated with poor and interindividual variability in treatment response. Cytochrome P450 family 1 subfamily B1 (CYP1B1) is a metabolizing enzyme, involved in the biotransformation of xenobiotics and anticancer drugs. We hypothesized that, single-nucleotide polymorphisms (SNPs), CYP1B1 142 C>G, 4326 C>G and 4360 A>G, and CYP1B1 mRNA expression might be potential biomarkers for prediction of treatment response in TNBC patients. CYP1B1 SNPs genotyping (76 TNBC patients) was performed using allele-specific polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism methods and mRNA expression of CYP1B1 (41 formalin-fixed paraffin embeddedblocks) was quantified using quantitative reverse transcription PCR. Homozygous variant genotype (GG) and variant allele (G) of CYP1B1 4326C>G polymorphism showed significantly higher risk for development of resistance to chemotherapy with adjusted odds ratio (OR): 6.802 and 3.010, respectively. Whereas, CYP1B1 142 CG heterozygous genotype showed significant association with goodtreatment response with adjusted OR: 0.199. CYP1B1 142C-4326G haplotype was associated with higher risk for chemoresistance with OR: 2.579. Expression analysis revealed that the relative expression of CYP1B1 was downregulated (0.592) in cancerous tissue compared with normal adjacent tissues. When analysed for association with chemotherapy response, CYP1B1 expression was found to be significantly upregulated (3.256) in cancerous tissues of patients who did not respond as opposed to those of patients who showed response to chemotherapy. Our findings suggest that SNPs together with mRNA expression of CYP1B1 may be useful biomarkers to predict chemotherapy response in TNBC patients.
  7. Maran S, Faten SA, Lim SE, Lai KS, Ibrahim WPW, Ankathil R, et al.
    Biomed Res Int, 2020;2020:6945730.
    PMID: 33062692 DOI: 10.1155/2020/6945730
    Background: The 22q11.2 deletion syndrome (22q11.2DS) is the most common form of deletion disorder in humans. Low copy repeats flanking the 22q11.2 region confers a substrate for nonallelic homologous recombination (NAHR) events leading to rearrangements which have been reported to be associated with highly variable and expansive phenotypes. The 22q11.2DS is reported as the most common genetic cause of congenital heart defects (CHDs).

    Methods: A total of 42 patients with congenital heart defects, as confirmed by echocardiography, were recruited. Genetic molecular analysis using a fluorescence in situ hybridization (FISH) technique was conducted as part of routine 22q11.2DS screening, followed by multiplex ligation-dependent probe amplification (MLPA), which serves as a confirmatory test.

    Results: Two of the 42 CHD cases (4.76%) indicated the presence of 22q11.2DS, and interestingly, both cases have conotruncal heart defects. In terms of concordance of techniques used, MLPA is superior since it can detect deletions within the 22q11.2 locus and outside of the typically deleted region (TDR) as well as duplications.

    Conclusion: The incidence of 22q11.2DS among patients with CHD in the east coast of Malaysia is 0.047. MLPA is a scalable and affordable alternative molecular diagnostic method in the screening of 22q11.2DS and can be routinely applied for the diagnosis of deletion syndromes.

  8. Tan SC, Suzairi MS, Aizat AA, Aminudin MM, Nurfatimah MS, Bhavaraju VM, et al.
    Med Oncol, 2013 Dec;30(4):693.
    PMID: 23996241 DOI: 10.1007/s12032-013-0693-6
    The inhibitory protein IκBα, encoded by the NFKBIA gene, plays an important role in regulating the activity of nuclear factor-kappa B, a transcription factor which has been implicated in the initiation and progression of cancers. This study aimed to evaluate the association of NFKBIA -826C>T (rs2233406) and -881A>G (rs3138053) polymorphisms with the risk of sporadic colorectal cancer (CRC) in Malaysian population. A case-control study comprising 474 subjects (237 CRC patients and 237 cancer-free controls) was carried out. The polymorphisms were genotyped from the genomic DNA of the study subjects employing PCR-RFLP, followed by DNA sequencing. The association between the polymorphic genotypes and CRC risk was evaluated by deriving odds ratios (ORs) and 95 % confidence intervals (CIs) using unconditional logistic regression analysis. The two polymorphisms were in complete and perfect linkage disequilibrium (D' = 1.0, r (2) = 1.0). Overall, no statistically significant CRC risk association was found for the polymorphisms (P > 0.05). A similar lack of association was observed when the data were stratified according to ethnicity (P > 0.05). However, stratification by gender revealed a significant inverse association between the heterozygous genotype of the polymorphisms and the risk of CRC among females (OR 0.53, 95 % CI 0.29-0.97, P = 0.04), but not among males (P > 0.05). In conclusion, the heterozygous genotype of the polymorphisms could contribute to a significantly decreased CRC risk among females, but not males, in the Malaysian population.
  9. Ankathil R, Mustapha MA, Abdul Aziz AA, Mohd Shahpudin SN, Zakaria AD, Abu Hassan MR, et al.
    Asian Pac J Cancer Prev, 2019 06 01;20(6):1621-1632.
    PMID: 31244280 DOI: 10.31557/APJCP.2019.20.6.1621
    AIM: To investigate the frequencies and association of polymorphic genotypes of IL-8 -251 T>A, TNF-α -308
    G>A, ICAM-1 K469E, ICAM-1 R241G, IL-6 -174 G>C, and PPAR-γ 34 C>G in modulating susceptibility risk in
    Malaysian colorectal cancer (CRC) patients. Methods: In this case-control study, peripheral blood samples of 560
    study subjects (280 CRC patients and 280 controls) were collected, DNA extracted and genotyped using PCR-RFLP
    and Allele Specific PCR. The association between polymorphic genotype and CRC susceptibility risk was determined
    using Logistic Regression analysis deriving Odds ratio (OR) and 95% CI. Results: On comparing the frequencies of
    genotypes of all single nucleotide polymorphisms ( SNPs ) in patients and controls, the homozygous variant genotypes
    IL-8 -251 AA and TNF-α -308 AA and variant A alleles were significantly higher in CRC patients. Investigation on
    the association of the variant alleles and genotypes singly, with susceptibility risk showed the homozygous variant A
    alleles and genotypes IL-8 -251 AA and TNF-α -308 AA to be at higher risk for CRC predisposition. Analysis based
    on age, gender and smoking habits showed that the polymorphisms IL8 -251 T>A and TNF – α 308 G>A contribute
    to a significantly higher risk among male and female who are more than 50 years and for smokers in this population.
    Conclusion: We observed an association between variant allele and genotypes of IL-8-251 T>A and TNF-α-308
    G>A polymorphisms and CRC susceptibility risk in Malaysian patients. These two SNPs in inflammatory response
    genes which undoubtedly contribute to individual risks to CRC susceptibility may be considered as potential genetic
    predisposition factors for CRC in Malaysian population.
  10. Annuar AA, Ankathil R, Mohd Yunus N, Husin A, Ab Rajab NS, Abdul Aziz AA, et al.
    Asian Pac J Cancer Prev, 2021 Feb 01;22(2):565-571.
    PMID: 33639675 DOI: 10.31557/APJCP.2021.22.2.565
    BACKGROUND: The FAS mediated apoptosis pathway involving the FAS and FASL genes plays a crucial role in the regulation of apoptotic cell death and imatinib mesylate (IM) mechanism of action. Promoter polymorphisms FAS-670 A>G and FAS-844 T>C which alter the transcriptional activity of these genes may grant a risk to develop cancer and revamp the drug activities towards the cancer cell. We investigated the association of these two polymorphisms with the susceptibility risk and IM treatment response in Malaysian chronic myeloid leukaemia (CML) patients.

    METHODS: This is a retrospective study, which included 93 CML patients and 98 controls. The polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method was used to genotype the FAS and FASL polymorphisms. Data nanlysis was done using SPSS Version 22. The associations of the genotypes with susceptibility risk and IM response in CML patients were assessed by means of logistic regression analysis and deriving odds ratio with 95% CI.

    RESULTS: We observed a significant association between FASL-844T>C polymorphism and CML susceptibility risk and IM response. Variant C allele and FASL-844 CC variant genotype carriers had significantly higher risk for CML susceptibility (OR 1.756, CI 1.163-2.652, p=0.007 and OR 2.261, CI 1.013-5.047, p=0.047 respectively). Conversely, the heterozygous genotype FASL-844 TC conferred lower risk for CML susceptibility (OR 0.379, CI 0.176-0.816, p=0.013). The heterozygous and homozygous variant genotypes and variant C alleles were found to confer a lower risk for the development of IM resistance with OR 0.129 (95% CI: 0.034-0.489 p=0.003), OR 0.257 (95% CI: 0.081-0.818, p=0.021), and OR 0.486 (95% CI: 0.262-0.899, p=0.021) respectively. We also found that FAS-670 A>G polymorphism was not associated with CML susceptibility risk or IM response.

    CONCLUSION: The genetic polymorphism FASL-844 T>C may contribute to the CML susceptibility risk and also IM treatment response in CML patients. Accodringly, it may be useful as a biomarker for predicting CML susceptibility risk and IM resistance.

  11. Azman BZ, Ankathil R, Siti Mariam I, Suhaida MA, Norhashimah M, Tarmizi AB, et al.
    Singapore Med J, 2007 Jun;48(6):550-4.
    PMID: 17538755
    This study was designed to evaluate the karyotype pattern, clinical features and other systemic anomalies of patients with Down syndrome in Malaysia.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links