Displaying publications 41 - 44 of 44 in total

Abstract:
Sort:
  1. Ahmad MA, Moganan M, A Hamid MS, Sulaiman N, Moorthy U, Hasnan N, et al.
    Life (Basel), 2023 Jul 06;13(7).
    PMID: 37511894 DOI: 10.3390/life13071519
    BACKGROUND: Low-level (LLLT) and high-intensity laser therapy (HILT) can be beneficial additions to knee osteoarthritis (KOA) rehabilitation exercises; however, it is still being determined which electrophysical agent is more effective.

    AIM: To compare the effects of LLLT and HILT as adjuncts to rehabilitation exercises (LL + EX and HL + EX) on clinical outcomes in KOA.

    METHODS: Thirty-four adults with mild-to-moderate KOA were randomly allocated to either LL + EX or HL + EX (n = 17 each). Both groups underwent their respective intervention weekly for twelve weeks: LL + EX (400 mW, 830 nm, 10 to 12 J/cm2, and 400 J per session) or HL + EX (5 W, 1064 nm, 19 to 150 J/cm2, and 3190 J per session). The laser probe was placed vertically in contact with the knee and moved in a slow-scan manner on the antero-medial/lateral sides of the knee joint. Participants' Knee Injury and Osteoarthritis Outcome Score (KOOS), Numerical Pain Rating Scale (NPRS), active knee flexion, and Timed Up-and-Go test (TUG) were assessed.

    RESULTS: Post intervention, both groups showed improvements in their KOOS, NPRS, active knee flexion, and TUG scores compared to baseline (p < 0.01). The mean difference of change in KOOS, NPRS, and active knee flexion scores for the HL + EX group surpassed the minimal clinically important difference threshold. In contrast, the LL + EX group only demonstrated clinical significance for the NPRS scores.

    CONCLUSIONS: Incorporating HILT as an adjunct to usual KOA rehabilitation led to significantly higher improvements in pain, physical function, and knee-related disability compared to LLLT applied in scanning mode.

  2. Hamdan PNF, Hamzaid NA, Hasnan N, Abd Razak NA, Razman R, Usman J
    Sci Rep, 2024 Mar 18;14(1):6451.
    PMID: 38499594 DOI: 10.1038/s41598-024-56955-w
    Literature has shown that simulated power production during conventional functional electrical stimulation (FES) cycling was improved by 14% by releasing the ankle joint from a fixed ankle setup and with the stimulation of the tibialis anterior and triceps surae. This study aims to investigate the effect of releasing the ankle joint on the pedal power production during FES cycling in persons with spinal cord injury (SCI). Seven persons with motor complete SCI participated in this study. All participants performed 1 min of fixed-ankle and 1 min of free-ankle FES cycling with two stimulation modes. In mode 1 participants performed FES-evoked cycling with the stimulation of quadriceps and hamstring muscles only (QH stimulation), while Mode 2 had stimulation of quadriceps, hamstring, tibialis anterior, and triceps surae muscles (QHT stimulation). The order of each trial was randomized in each participant. Free-ankle FES cycling offered greater ankle plantar- and dorsiflexion movement at specific slices of 20° crank angle intervals compared to fixed-ankle. There were significant differences in the mean and peak normalized pedal power outputs (POs) [F(1,500) = 14.03, p 
  3. Hasnan N, Hamzaid NA, Magenthran V, Davis GM
    Games Health J, 2024 May 06.
    PMID: 38709784 DOI: 10.1089/g4h.2023.0047
    Background: Virtual reality (VR)-enhanced indoor hybrid cycling in people with spinal cord injury (SCI) can be comparable to outdoor hybrid cycling. Method: Eight individuals with chronic thoracic-lesion SCI performed voluntary arm and electrically assisted leg cycling on a hybrid recumbent tricycle. Exercises were conducted outdoors and indoors incorporating VR technology in which the outdoor environment was simulated on a large flat screen monitor. Electrical stimulation was applied bilaterally to the leg muscle groups. Oxygen uptake (VO2), heart rate, energy expenditures, and Ratings of Perceived Exertion were measured over a 30-minute outdoor test course that was also VR-simulated indoors. Immediately after each exercise, participants completed questionnaires to document their perceptual-psychological responses. Results: Mean 30-minute VO2 was higher for indoor VR exercise (average VO2-indoor VR-exercise: 1316 ± mL/min vs. outdoor cycling: 1255 ± 53 mL/min; highest VO2-indoor VR-exercise: 1615 ± 67 mL/min vs. outdoor cycling: 1725 ± 67 mL/min). Arm and leg activity counts were significantly higher during indoor VR-assisted hybrid functional electrical stimulation (FES) cycling than outdoors; 42% greater for the arms and 23% higher for the legs (P 
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links