METHODS: Subjects age 18 to 60 years will undergo a baseline evaluation to establish the diagnosis of migraine based on the International Classification of Headache Disorder 3rd Edition (ICHD-3). Those who fulfil the ICHD-3 criteria for episodic migraine and compliant to the headache diary during a month run-in period will be enrolled. A total of 76 subjects will be randomised to receive either transcranial magnetic stimulation or sham stimulation for 5 sessions within 2 weeks duration. Follow-up sessions will be conducted monthly for three consecutive months. Prior to treatment, subjects will be required to fill up questionnaires and undergo few procedures such as electroencephalography, transcranial Doppler ultrasound and biochemical analysis for serum serotonin, serum calcitonin gene-related peptide and serum beta-endorphin. These procedures will be repeated at month 3 after receiving the last treatment. The primary outcome measure of this study is the difference in mean monthly migraine days at baseline and at months 1, 2 and 3 after treatment sessions.
DISCUSSION: Following evidence from previous studies showing restoration of dorsolateral prefrontal cortex (DLPFC) activation to almost normal level, the rTMS intervention will target left DLPFC in this study. An intermediate duration of treatment sessions is selected for this study. It is set to five treatment sessions given within 2 weeks duration.
TRIAL REGISTRATION: ClinicalTrials.gov NCT03556722 . Registered on 14 June 2018.
CASE PRESENTATION: We report the first case of Longitudinal Extensive Transverse Myelitis (LETM) in Malaysia following administration of the chimpanzee adenovirus-vectored (ChAdOx1 nCoV-19) vaccine. A 25-year-old female presented with bilateral lower limb weakness and inability to walk with a sensory level up to T8 with absent visual symptoms. Urgent gadolinium-enhanced magnetic resonance imaging (MRI) of the spine showed long segment TM over the thoracic region. Cerebrospinal fluid autoantibodies for anti-aquaporin-4 and anti-myelin-oligodendrocyte were negative. A diagnosis of LETM following vaccination was made, and the patient was started on a high dose of intravenous methylprednisolone. The patient eventually made a recovery following treatment.
CONCLUSION: LETM is a rare but serious adverse reaction following vaccination. Previously reported cases showed an onset of symptoms between 10 to 14 days post-vaccination, suggesting a delayed immunogenic reaction. However, the incidence of myelitis in COVID-19 is much more common, far greater than the risk associated with vaccination.
METHODS: We retrospectively analyzed one-year data from our stroke registry that began with the establishment of our hyperacute stroke service at Universiti Putra Malaysia Teaching Hospital from April 2020 until May 2021.
RESULTS: Setting up acute stroke services during the pandemic with constrained manpower and implementation of COVID-19 SOPs, was challenging. There was a significant dip of stroke admission from April to June 2020 due to the Movement Control Order (MCO) implemented by the government to curb the spread of COVID-19. However, the numbers of stroke admission steadily rose approaching 2021, after the implementation of recovery MCO. We managed to treat 75 patients with hyperacute stroke interventions i.e. intravenous thrombolysis (IVT), mechanical thrombectomy (MT) or both. Despite implementing COVID-19 SOPs and using magnetic resonance imaging (MRI) as our first line acute stroke imaging modality, clinical outcomes in our cohort were encouraging; almost 40% of patients who underwent hyperacute stroke treatment had early neurological recovery (ENR), and only 33% of patients had early neurological stability (ENS). In addition, we were able to maintain our door-to-imaging (DTI) and door-to-needle (DTN) time in line with international recommendations.
CONCLUSIONS: Our data reflects that COVID-19 SOPs did not deter successful delivery of hyperacute stroke services in our center. However, bigger and multi center studies are required to support our findings.
METHODS: A literature review was conducted for systematic reviews, meta-analyses, and scoping reviews published between January 1, 2020 and January 1, 2023. Literature assessing individuals with pre-existing neurological diseases and COVID-19 infection was included. Information regarding infection severity was extracted, and potential limitations were identified.
RESULTS: Thirty-nine articles met inclusion criteria, with data assessing >3 million patients from 51 countries. 26/51 (50.9%) of countries analyzed were classified as high income, while the remaining represented middle-low income countries (25/51; 49.0%). A majority of evidence focused on the impact of cerebrovascular disease (17/39; 43.5%) and dementia (5/39; 12.8%) on COVID-19 severity and mortality. 92.3% of the articles (36/39) suggested a significant association between neurological conditions and increased risk of severe COVID-19 and mortality. Cerebrovascular disease, dementia, Parkinson's disease, and epilepsy were associated with increased COVID severity and mortality.
CONCLUSION: Pre-existing neurological diseases including cerebrovascular disease, Alzheimer's disease and other dementias, epilepsy, and Parkinson's disease are significant risk factors for severity of COVID-19 infection and mortality in the acute infectious period. Given that 61.5% (24/39) of the current evidence only includes data from 2020, further updated literature is crucial to identify the relationship between chronic neurological conditions and clinical characteristics of COVID-19 variants.
OBJECTIVE: This study was to determine the prevalence and factors associated with anti-NMDAR encephalitis among affected patients.
MATERIAL AND METHODS: The protocol of this study has been registered (2019: CRD42019142002) with the International Prospective Register of Systematic Reviews (PROSPERO). The primary outcome was the incidence or prevalence of anti-NMDAR encephalitis and secondary outcomes were factors associated with anti-NMDAR encephalitis.
RESULTS: There were 11 studies and a total of 873 million patients taken from high-risk populations across 11 countries that were included in the primary analysis. The overall pooled prevalence of anti-NMDAR encephalitis among patients with medical conditions was 7.0% (95% CI = 4.4, 9.6). Those with first episode of psychosis or schizophrenia were at a higher risk of developing anti-NMDAR encephalitis with an odds ratio of 5.976 (95% CI = 1.122, 31.825).
CONCLUSION: We found that almost one-tenth of patients with medical conditions had anti-NMDAR encephalitis; particularly those with first episode of psychosis or schizophrenia were among the high-risk medical conditions.
METHODS: This is a systematic review protocol describing essential reporting items based on the PRISMA for systematic review protocols (PRISMA-P) (Registration number: CRD42020220636). We aim to review the effectiveness, tolerability, and safety of hf-rTMS at DLPFC in randomised controlled trials (RCTs) as migraine prophylactic treatment. We will search Scopus, Cumulative Index to Nursing and Allied Health Literature Plus, PubMed, Cochrane Central Register of Controlled Trials and Biomed Central for relevant articles from randomised controlled clinical trials that used hf-rTMS applied at DLPFC for the treatment of migraine. The risk of bias will be assessed using the version 2 "Risk of bias" tool from Cochrane Handbook for Systematic Reviews of Interventions Version 6.1. We will investigate the evidence on efficacy, tolerability and safety and we will compare the outcomes between the hf-rTMS intervention and sham groups.
DISCUSSION: This systematic review will further determine the efficacy, safety, and tolerability of hf-rTMS applied at DLPFC for migraine prophylaxis. It will provide additional data for health practitioners and policymakers about the usefulness of hf-rTMS for migraine preventive treatment.
METHODS: Literature reviews were undertaken to inform summaries of the following: vitamin D status globally and in Asian and Malaysian populations, vitamin D status among individuals with common medical conditions, and current recommendations to achieve vitamin D sufficiency through sun exposure, food intake and supplementation. Recommendations were based on the findings of the literature reviews, recent European guidance on vitamin D supplementation, the 2018 road map for action on vitamin D in low- and middle-income countries, and research recommendations proposed by the Malaysian Ministry of Health in 2017.
RESULTS: Recommendations on assessment of vitamin D in the adult Malaysian population include using serum or plasma 25-hydroxyvitamin D concentration as a biomarker, widespread participation by Malaysian laboratories in the Vitamin D Standardization Program, adoption of the US Endocrine Society definitions of vitamin D deficiency and insufficiency, and development of a comprehensive nationwide vitamin D status study. Specific high-risk groups are identified for vitamin D assessment and recommendations relating to loading doses and ongoing management are also made.
CONCLUSION: This Position Paper provides individual clinicians and national stakeholder organisations with clear recommendations to achieve vitamin D sufficiency in the adult population of Malaysia.
METHODS: We searched PubMed, Medline, Cochrane library, ClinicalTrials.gov, and EMBASE for studies from December 31, 2019, to December 15, 2020, enrolling consecutive patients with COVID-19 presenting with neurologic manifestations. Risk of bias was examined with the Joanna Briggs Institute scale. A random-effects meta-analysis was performed, and pooled prevalence and 95% confidence intervals (CIs) were calculated for neurologic manifestations. Odds ratio (ORs) and 95% CIs were calculated to determine the association of neurologic manifestations with disease severity and mortality. Presence of heterogeneity was assessed with I 2, meta-regression, and subgroup analyses. Statistical analyses were conducted in R version 3.6.2.
RESULTS: Of 2,455 citations, 350 studies were included in this review, providing data on 145,721 patients with COVID-19, 89% of whom were hospitalized. Forty-one neurologic manifestations (24 symptoms and 17 diagnoses) were identified. Pooled prevalence of the most common neurologic symptoms included fatigue (32%), myalgia (20%), taste impairment (21%), smell impairment (19%), and headache (13%). A low risk of bias was observed in 85% of studies; studies with higher risk of bias yielded higher prevalence estimates. Stroke was the most common neurologic diagnosis (pooled prevalence 2%). In patients with COVID-19 ≥60 years of age, the pooled prevalence of acute confusion/delirium was 34%, and the presence of any neurologic manifestations in this age group was associated with mortality (OR 1.80, 95% CI 1.11-2.91).
DISCUSSION: Up to one-third of patients with COVID-19 analyzed in this review experienced at least 1 neurologic manifestation. One in 50 patients experienced stroke. In those >60 years of age, more than one-third had acute confusion/delirium; the presence of neurologic manifestations in this group was associated with nearly a doubling of mortality. Results must be interpreted with the limitations of observational studies and associated bias in mind.
SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42020181867.
METHODS: The study protocol was registered with PROSPERO (CRD42022325505). MEDLINE (PubMed), Embase, and the Cochrane Library were used as information sources. Eligible studies included original articles of cohort studies, case-control studies, cross-sectional studies, and case series with ≥5 subjects that reported the prevalence and type of neurological manifestations, with a minimum follow-up of 3 months after the acute phase of COVID-19 disease. Two independent reviewers screened studies from January 1, 2020, to June 16, 2022. The following manifestations were assessed: neuromuscular disorders, encephalopathy/altered mental status/delirium, movement disorders, dysautonomia, cerebrovascular disorders, cognitive impairment/dementia, sleep disorders, seizures, syncope/transient loss of consciousness, fatigue, gait disturbances, anosmia/hyposmia, and headache. The pooled prevalence and their 95% confidence intervals were calculated at the six pre-specified times.
RESULTS: 126 of 6,565 screened studies fulfilled the eligibility criteria, accounting for 1,542,300 subjects with COVID-19 disease. Of these, four studies only reported data on neurological conditions other than the 13 selected. The neurological disorders with the highest pooled prevalence estimates (per 100 subjects) during the acute phase of COVID-19 were anosmia/hyposmia, fatigue, headache, encephalopathy, cognitive impairment, and cerebrovascular disease. At 3-month follow-up, the pooled prevalence of fatigue, cognitive impairment, and sleep disorders was still 20% and higher. At six- and 9-month follow-up, there was a tendency for fatigue, cognitive impairment, sleep disorders, anosmia/hyposmia, and headache to further increase in prevalence. At 12-month follow-up, prevalence estimates decreased but remained high for some disorders, such as fatigue and anosmia/hyposmia. Other neurological disorders had a more fluctuating occurrence.
DISCUSSION: Neurological manifestations were prevalent during the acute phase of COVID-19 and over the 1-year follow-up period, with the highest overall prevalence estimates for fatigue, cognitive impairment, sleep disorders, anosmia/hyposmia, and headache. There was a downward trend over time, suggesting that neurological manifestations in the early post-COVID-19 phase may be long-lasting but not permanent. However, especially for the 12-month follow-up time point, more robust data are needed to confirm this trend.