Displaying publications 41 - 60 of 60 in total

Abstract:
Sort:
  1. Schmidt JA, Fensom GK, Rinaldi S, Scalbert A, Appleby PN, Achaintre D, et al.
    Int J Cancer, 2020 Feb 01;146(3):720-730.
    PMID: 30951192 DOI: 10.1002/ijc.32314
    Metabolomics may reveal novel insights into the etiology of prostate cancer, for which few risk factors are established. We investigated the association between patterns in baseline plasma metabolite profile and subsequent prostate cancer risk, using data from 3,057 matched case-control sets from the European Prospective Investigation into Cancer and Nutrition (EPIC). We measured 119 metabolite concentrations in plasma samples, collected on average 9.4 years before diagnosis, by mass spectrometry (AbsoluteIDQ p180 Kit, Biocrates Life Sciences AG). Metabolite patterns were identified using treelet transform, a statistical method for identification of groups of correlated metabolites. Associations of metabolite patterns with prostate cancer risk (OR1SD ) were estimated by conditional logistic regression. Supplementary analyses were conducted for metabolite patterns derived using principal component analysis and for individual metabolites. Men with metabolite profiles characterized by higher concentrations of either phosphatidylcholines or hydroxysphingomyelins (OR1SD  = 0.77, 95% confidence interval 0.66-0.89), acylcarnitines C18:1 and C18:2, glutamate, ornithine and taurine (OR1SD  = 0.72, 0.57-0.90), or lysophosphatidylcholines (OR1SD  = 0.81, 0.69-0.95) had lower risk of advanced stage prostate cancer at diagnosis, with no evidence of heterogeneity by follow-up time. Similar associations were observed for the two former patterns with aggressive disease risk (the more aggressive subset of advanced stage), while the latter pattern was inversely related to risk of prostate cancer death (OR1SD  = 0.77, 0.61-0.96). No associations were observed for prostate cancer overall or less aggressive tumor subtypes. In conclusion, metabolite patterns may be related to lower risk of more aggressive prostate tumors and prostate cancer death, and might be relevant to etiology of advanced stage prostate cancer.
  2. Perez-Cornago A, Huybrechts I, Appleby PN, Schmidt JA, Crowe FL, Overvad K, et al.
    Int J Cancer, 2020 Jan 01;146(1):44-57.
    PMID: 30807653 DOI: 10.1002/ijc.32233
    The associations of individual dietary fatty acids with prostate cancer risk have not been examined comprehensively. We examined the prospective association of individual dietary fatty acids with prostate cancer risk overall, by tumor subtypes, and prostate cancer death. 142,239 men from the European Prospective Investigation into Cancer and Nutrition who were free from cancer at recruitment were included. Dietary intakes of individual fatty acids were estimated using center-specific validated dietary questionnaires at baseline and calibrated with 24-h recalls. Multivariable Cox regression models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). After an average follow-up of 13.9 years, 7,036 prostate cancer cases and 936 prostate cancer deaths were ascertained. Intakes of individual fatty acids were not related to overall prostate cancer risk. There was evidence of heterogeneity in the association of some short chain saturated fatty acids with prostate cancer risk by tumor stage (pheterogeneity
  3. Perez-Cornago A, Travis RC, Appleby PN, Tsilidis KK, Tjønneland A, Olsen A, et al.
    Int J Cancer, 2017 Jul 15;141(2):287-297.
    PMID: 28419475 DOI: 10.1002/ijc.30741
    Several dietary factors have been studied in relation to prostate cancer; however, most studies have not reported on subtypes of fruit and vegetables or tumor characteristics, and results obtained so far are inconclusive. This study aimed to examine the prospective association of total and subtypes of fruit and vegetable intake with the incidence of prostate cancer overall, by grade and stage of disease, and prostate cancer death. Lifestyle information for 142,239 men participating in the European Prospective Investigation into Cancer and Nutrition from 8 European countries was collected at baseline. Multivariable Cox regression models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). After an average follow-up time of 13.9 years, 7,036 prostate cancer cases were identified. Compared with the lowest fifth, those in the highest fifth of total fruit intake had a significantly reduced prostate cancer risk (HR = 0.91; 95% CI = 0.83-0.99; p-trend = 0.01). No associations between fruit subtypes and prostate cancer risk were observed, except for citrus fruits, where a significant trend was found (HR = 0.94; 95% CI = 0.86-1.02; p-trend = 0.01). No associations between total and subtypes of vegetables and prostate cancer risk were observed. We found no evidence of heterogeneity in these associations by tumor grade and stage, with the exception of significant heterogeneity by tumor grade (pheterogeneity <0.001) for leafy vegetables. No significant associations with prostate cancer death were observed. The main finding of this prospective study was that a higher fruit intake was associated with a small reduction in prostate cancer risk. Whether this association is causal remains unclear.
  4. Caini S, Masala G, Saieva C, Kvaskoff M, Savoye I, Sacerdote C, et al.
    Int J Cancer, 2017 May 15;140(10):2246-2255.
    PMID: 28218395 DOI: 10.1002/ijc.30659
    In vitro and animal studies suggest that bioactive constituents of coffee and tea may have anticarcinogenic effects against cutaneous melanoma; however, epidemiological evidence is limited to date. We examined the relationships between coffee (total, caffeinated or decaffeinated) and tea consumption and risk of melanoma in the European Prospective Investigation into Cancer and Nutrition (EPIC). EPIC is a multicentre prospective study that enrolled over 500,000 participants aged 25-70 years from ten European countries in 1992-2000. Information on coffee and tea drinking was collected at baseline using validated country-specific dietary questionnaires. We used adjusted Cox proportional hazards regression models to calculate hazard ratios (HR) and 95% confidence intervals (95% CI) for the associations between coffee and tea consumption and melanoma risk. Overall, 2,712 melanoma cases were identified during a median follow-up of 14.9 years among 476,160 study participants. Consumption of caffeinated coffee was inversely associated with melanoma risk among men (HR for highest quartile of consumption vs. non-consumers 0.31, 95% CI 0.14-0.69) but not among women (HR 0.96, 95% CI 0.62-1.47). There were no statistically significant associations between consumption of decaffeinated coffee or tea and the risk of melanoma among both men and women. The consumption of caffeinated coffee was inversely associated with melanoma risk among men in this large cohort study. Further investigations are warranted to confirm our findings and clarify the possible role of caffeine and other coffee compounds in reducing the risk of melanoma.
  5. Perez-Cornago A, Appleby PN, Tipper S, Key TJ, Allen NE, Nieters A, et al.
    Int J Cancer, 2017 Mar 01;140(5):1111-1118.
    PMID: 27870006 DOI: 10.1002/ijc.30528
    Insulin-like growth factor (IGF)-I has cancer promoting activities. However, the hypothesis that circulating IGF-I concentration is related to risk of lymphoma overall or its subtypes has not been examined prospectively. IGF-I concentration was measured in pre-diagnostic plasma samples from a nested case-control study of 1,072 cases of lymphoid malignancies and 1,072 individually matched controls from the European Prospective Investigation into Cancer and Nutrition. Odds ratios (ORs) and confidence intervals (CIs) for lymphoma were calculated using conditional logistic regression. IGF-I concentration was not associated with overall lymphoma risk (multivariable-adjusted OR for highest versus lowest third = 0.77 [95% CI = 0.57-1.03], ptrend  = 0.06). There was no statistical evidence of heterogeneity in this association with IGF-I by sex, age at blood collection, time between blood collection and diagnosis, age at diagnosis, or body mass index (pheterogeneity for all  ≥ 0.05). There were no associations between IGF-I concentration and risk for specific BCL subtypes, T-cell lymphoma or Hodgkin lymphoma, although number of cases were small. In this European population, IGF-I concentration was not associated with risk of overall lymphoma. This study provides the first prospective evidence on circulating IGF-I concentrations and risk of lymphoma. Further prospective data are required to examine associations of IGF-I concentrations with lymphoma subtypes.
  6. Aleksandrova K, Jenab M, Leitzmann M, Bueno-de-Mesquita B, Kaaks R, Trichopoulou A, et al.
    Int J Epidemiol, 2017 Dec 01;46(6):1823-1835.
    PMID: 29025032 DOI: 10.1093/ije/dyx174
    BACKGROUND: There is convincing evidence that high physical activity lowers the risk of colon cancer; however, the underlying biological mechanisms remain largely unknown. We aimed to determine the extent to which body fatness and biomarkers of various biologically plausible pathways account for the association between physical activity and colon cancer.

    METHODS: We conducted a nested case-control study in a cohort of 519 978 men and women aged 25 to 70 years followed from 1992 to 2003. A total of 713 incident colon cancer cases were matched, using risk-set sampling, to 713 controls on age, sex, study centre, fasting status and hormonal therapy use. The amount of total physical activity during the past year was expressed in metabolic equivalent of task [MET]-h/week. Anthropometric measurements and blood samples were collected at study baseline.

    RESULTS: High physical activity was associated with a lower risk of colon cancer: relative risk ≥91 MET-h/week vs <91 MET-h/week = 0.75 [95% confidence interval (CI): 0.57 to 0.96]. In mediation analyses, this association was accounted for by waist circumference: proportion explained effect (PEE) = 17%; CI: 4% to 52%; and the biomarkers soluble leptin receptor (sOB-R): PEE = 15%; 95% CI: 1% to 50% and 5-hydroxyvitamin D (25[OH]D): PEE = 30%; 95% CI: 12% to 88%. In combination, these factors explained 45% (95% CI: 20% to 125%) of the association. Beyond waist circumference, sOB-R and 25[OH]D additionally explained 10% (95% CI: 1%; 56%) and 23% (95% CI: 6%; 111%) of the association, respectively.

    CONCLUSIONS: Promoting physical activity, particularly outdoors, and maintaining metabolic health and adequate vitamin D levels could represent a promising strategy for colon cancer prevention.

  7. Carayol M, Leitzmann MF, Ferrari P, Zamora-Ros R, Achaintre D, Stepien M, et al.
    J Proteome Res, 2017 Sep 01;16(9):3137-3146.
    PMID: 28758405 DOI: 10.1021/acs.jproteome.6b01062
    Metabolomics is now widely used to characterize metabolic phenotypes associated with lifestyle risk factors such as obesity. The objective of the present study was to explore the associations of body mass index (BMI) with 145 metabolites measured in blood samples in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Metabolites were measured in blood from 392 men from the Oxford (UK) cohort (EPIC-Oxford) and in 327 control subjects who were part of a nested case-control study on hepatobiliary carcinomas (EPIC-Hepatobiliary). Measured metabolites included amino acids, acylcarnitines, hexoses, biogenic amines, phosphatidylcholines, and sphingomyelins. Linear regression models controlled for potential confounders and multiple testing were run to evaluate the associations of metabolite concentrations with BMI. 40 and 45 individual metabolites showed significant differences according to BMI variations, in the EPIC-Oxford and EPIC-Hepatobiliary subcohorts, respectively. Twenty two individual metabolites (kynurenine, one sphingomyelin, glutamate and 19 phosphatidylcholines) were associated with BMI in both subcohorts. The present findings provide additional knowledge on blood metabolic signatures of BMI in European adults, which may help identify mechanisms mediating the relationship of BMI with obesity-related diseases.
  8. Allen NE, Travis RC, Appleby PN, Albanes D, Barnett MJ, Black A, et al.
    J Natl Cancer Inst, 2016 11;108(11).
    PMID: 27385803 DOI: 10.1093/jnci/djw153
    BACKGROUND: Some observational studies suggest that a higher selenium status is associated with a lower risk of prostate cancer but have been generally too small to provide precise estimates of associations, particularly by disease stage and grade.

    METHODS: Collaborating investigators from 15 prospective studies provided individual-participant records (from predominantly men of white European ancestry) on blood or toenail selenium concentrations and prostate cancer risk. Odds ratios of prostate cancer by selenium concentration were estimated using multivariable-adjusted conditional logistic regression. All statistical tests were two-sided.

    RESULTS: Blood selenium was not associated with the risk of total prostate cancer (multivariable-adjusted odds ratio [OR] per 80 percentile increase = 1.01, 95% confidence interval [CI] = 0.83 to 1.23, based on 4527 case patients and 6021 control subjects). However, there was heterogeneity by disease aggressiveness (ie, advanced stage and/or prostate cancer death, Pheterogeneity = .01), with high blood selenium associated with a lower risk of aggressive disease (OR = 0.43, 95% CI = 0.21 to 0.87) but not with nonaggressive disease. Nail selenium was inversely associated with total prostate cancer (OR = 0.29, 95% CI = 0.22 to 0.40, Ptrend < .001, based on 1970 case patients and 2086 control subjects), including both nonaggressive (OR = 0.33, 95% CI = 0.22 to 0.50) and aggressive disease (OR = 0.18, 95% CI = 0.11 to 0.31, Pheterogeneity = .08).

    CONCLUSIONS: Nail, but not blood, selenium concentration is inversely associated with risk of total prostate cancer, possibly because nails are a more reliable marker of long-term selenium exposure. Both blood and nail selenium concentrations are associated with a reduced risk of aggressive disease, which warrants further investigation.

  9. Dadaev T, Saunders EJ, Newcombe PJ, Anokian E, Leongamornlert DA, Brook MN, et al.
    Nat Commun, 2018 06 11;9(1):2256.
    PMID: 29892050 DOI: 10.1038/s41467-018-04109-8
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling.
  10. Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, et al.
    Nat Genet, 2018 07;50(7):928-936.
    PMID: 29892016 DOI: 10.1038/s41588-018-0142-8
    Genome-wide association studies (GWAS) and fine-mapping efforts to date have identified more than 100 prostate cancer (PrCa)-susceptibility loci. We meta-analyzed genotype data from a custom high-density array of 46,939 PrCa cases and 27,910 controls of European ancestry with previously genotyped data of 32,255 PrCa cases and 33,202 controls of European ancestry. Our analysis identified 62 novel loci associated (P C, p.Pro1054Arg) in ATM and rs2066827 (OR = 1.06; P = 2.3 × 10-9; T>G, p.Val109Gly) in CDKN1B. The combination of all loci captured 28.4% of the PrCa familial relative risk, and a polygenic risk score conferred an elevated PrCa risk for men in the ninetieth to ninety-ninth percentiles (relative risk = 2.69; 95% confidence interval (CI): 2.55-2.82) and first percentile (relative risk = 5.71; 95% CI: 5.04-6.48) risk stratum compared with the population average. These findings improve risk prediction, enhance fine-mapping, and provide insight into the underlying biology of PrCa1.
  11. Schumacher FR, Olama AAA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, et al.
    Nat Genet, 2019 02;51(2):363.
    PMID: 30622367 DOI: 10.1038/s41588-018-0330-6
    In the version of this article initially published, the name of author Manuela Gago-Dominguez was misspelled as Manuela Gago Dominguez. The error has been corrected in the HTML and PDF version of the article.
  12. Conti DV, Darst BF, Moss LC, Saunders EJ, Sheng X, Chou A, et al.
    Nat Genet, 2021 Jan;53(1):65-75.
    PMID: 33398198 DOI: 10.1038/s41588-020-00748-0
    Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction.
  13. Wang A, Shen J, Rodriguez AA, Saunders EJ, Chen F, Janivara R, et al.
    Nat Genet, 2023 Dec;55(12):2065-2074.
    PMID: 37945903 DOI: 10.1038/s41588-023-01534-4
    The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups.
  14. Childs EJ, Mocci E, Campa D, Bracci PM, Gallinger S, Goggins M, et al.
    Nat Genet, 2015 Aug;47(8):911-6.
    PMID: 26098869 DOI: 10.1038/ng.3341
    Pancreatic cancer is the fourth leading cause of cancer death in the developed world. Both inherited high-penetrance mutations in BRCA2 (ref. 2), ATM, PALB2 (ref. 4), BRCA1 (ref. 5), STK11 (ref. 6), CDKN2A and mismatch-repair genes and low-penetrance loci are associated with increased risk. To identify new risk loci, we performed a genome-wide association study on 9,925 pancreatic cancer cases and 11,569 controls, including 4,164 newly genotyped cases and 3,792 controls in 9 studies from North America, Central Europe and Australia. We identified three newly associated regions: 17q25.1 (LINC00673, rs11655237, odds ratio (OR) = 1.26, 95% confidence interval (CI) = 1.19-1.34, P = 1.42 × 10(-14)), 7p13 (SUGCT, rs17688601, OR = 0.88, 95% CI = 0.84-0.92, P = 1.41 × 10(-8)) and 3q29 (TP63, rs9854771, OR = 0.89, 95% CI = 0.85-0.93, P = 2.35 × 10(-8)). We detected significant association at 2p13.3 (ETAA1, rs1486134, OR = 1.14, 95% CI = 1.09-1.19, P = 3.36 × 10(-9)), a region with previous suggestive evidence in Han Chinese. We replicated previously reported associations at 9q34.2 (ABO), 13q22.1 (KLF5), 5p15.33 (TERT and CLPTM1), 13q12.2 (PDX1), 1q32.1 (NR5A2), 7q32.3 (LINC-PINT), 16q23.1 (BCAR1) and 22q12.1 (ZNRF3). Our study identifies new loci associated with pancreatic cancer risk.
  15. Campa D, Pastore M, Gentiluomo M, Talar-Wojnarowska R, Kupcinskas J, Malecka-Panas E, et al.
    Oncotarget, 2016 08 30;7(35):57011-57020.
    PMID: 27486979 DOI: 10.18632/oncotarget.10935
    The CDKN2A (p16) gene plays a key role in pancreatic cancer etiology. It is one of the most commonly somatically mutated genes in pancreatic cancer, rare germline mutations have been found to be associated with increased risk of developing familiar pancreatic cancer and CDKN2A promoter hyper-methylation has been suggested to play a critical role both in pancreatic cancer onset and prognosis. In addition several unrelated SNPs in the 9p21.3 region, that includes the CDNK2A, CDNK2B and the CDNK2B-AS1 genes, are associated with the development of cancer in various organs. However, association between the common genetic variability in this region and pancreatic cancer risk is not clearly understood. We sought to fill this gap in a case-control study genotyping 13 single nucleotide polymorphisms (SNPs) in 2,857 pancreatic ductal adenocarcinoma (PDAC) patients and 6,111 controls in the context of the Pancreatic Disease Research (PANDoRA) consortium. We found that the A allele of the rs3217992 SNP was associated with an increased pancreatic cancer risk (ORhet=1.14, 95% CI 1.01-1.27, p=0.026, ORhom=1.30, 95% CI 1.12-1.51, p=0.00049). This pleiotropic variant is reported to be a mir-SNP that, by changing the binding site of one or more miRNAs, could influence the normal cell cycle progression and in turn increase PDAC risk. In conclusion, we observed a novel association in a pleiotropic region that has been found to be of key relevance in the susceptibility to various types of cancer and diabetes suggesting that the CDKN2A/B locus could represent a genetic link between diabetes and pancreatic cancer risk.
  16. Zhang M, Wang Z, Obazee O, Jia J, Childs EJ, Hoskins J, et al.
    Oncotarget, 2016 Oct 11;7(41):66328-66343.
    PMID: 27579533 DOI: 10.18632/oncotarget.11041
    Genome-wide association studies (GWAS) have identified common pancreatic cancer susceptibility variants at 13 chromosomal loci in individuals of European descent. To identify new susceptibility variants, we performed imputation based on 1000 Genomes (1000G) Project data and association analysis using 5,107 case and 8,845 control subjects from 27 cohort and case-control studies that participated in the PanScan I-III GWAS. This analysis, in combination with a two-staged replication in an additional 6,076 case and 7,555 control subjects from the PANcreatic Disease ReseArch (PANDoRA) and Pancreatic Cancer Case-Control (PanC4) Consortia uncovered 3 new pancreatic cancer risk signals marked by single nucleotide polymorphisms (SNPs) rs2816938 at chromosome 1q32.1 (per allele odds ratio (OR) = 1.20, P = 4.88x10 -15), rs10094872 at 8q24.21 (OR = 1.15, P = 3.22x10 -9) and rs35226131 at 5p15.33 (OR = 0.71, P = 1.70x10 -8). These SNPs represent independent risk variants at previously identified pancreatic cancer risk loci on chr1q32.1 ( NR5A2), chr8q24.21 ( MYC) and chr5p15.33 ( CLPTM1L- TERT) as per analyses conditioned on previously reported susceptibility variants. We assessed expression of candidate genes at the three risk loci in histologically normal ( n = 10) and tumor ( n = 8) derived pancreatic tissue samples and observed a marked reduction of NR5A2 expression (chr1q32.1) in the tumors (fold change -7.6, P = 5.7x10 -8). This finding was validated in a second set of paired ( n = 20) histologically normal and tumor derived pancreatic tissue samples (average fold change for three NR5A2 isoforms -31.3 to -95.7, P = 7.5x10 -4-2.0x10 -3). Our study has identified new susceptibility variants independently conferring pancreatic cancer risk that merit functional follow-up to identify target genes and explain the underlying biology.
  17. Bakker MF, Peeters PH, Klaasen VM, Bueno-de-Mesquita HB, Jansen EH, Ros MM, et al.
    Am J Clin Nutr, 2016 Feb;103(2):454-64.
    PMID: 26791185 DOI: 10.3945/ajcn.114.101659
    BACKGROUND: Carotenoids and vitamin C are thought to be associated with reduced cancer risk because of their antioxidative capacity.

    OBJECTIVE: This study evaluated the associations of plasma carotenoid, retinol, tocopherol, and vitamin C concentrations and risk of breast cancer.

    DESIGN: In a nested case-control study within the European Prospective Investigation into Cancer and Nutrition cohort, 1502 female incident breast cancer cases were included, with an oversampling of premenopausal (n = 582) and estrogen receptor-negative (ER-) cases (n = 462). Controls (n = 1502) were individually matched to cases by using incidence density sampling. Prediagnostic samples were analyzed for α-carotene, β-carotene, lycopene, lutein, zeaxanthin, β-cryptoxanthin, retinol, α-tocopherol, γ-tocopherol, and vitamin C. Breast cancer risk was computed according to hormone receptor status and age at diagnosis (proxy for menopausal status) by using conditional logistic regression and was further stratified by smoking status, alcohol consumption, and body mass index (BMI). All statistical tests were 2-sided.

    RESULTS: In quintile 5 compared with quintile 1, α-carotene (OR: 0.61; 95% CI: 0.39, 0.98) and β-carotene (OR: 0.41; 95% CI: 0.26, 0.65) were inversely associated with risk of ER- breast tumors. The other analytes were not statistically associated with ER- breast cancer. For estrogen receptor-positive (ER+) tumors, no statistically significant associations were found. The test for heterogeneity between ER- and ER+ tumors was statistically significant only for β-carotene (P-heterogeneity = 0.03). A higher risk of breast cancer was found for retinol in relation to ER-/progesterone receptor-negative tumors (OR: 2.37; 95% CI: 1.20, 4.67; P-heterogeneity with ER+/progesterone receptor positive = 0.06). We observed no statistically significant interaction between smoking, alcohol, or BMI and all investigated plasma analytes (based on tertile distribution).

    CONCLUSION: Our results indicate that higher concentrations of plasma β-carotene and α-carotene are associated with lower breast cancer risk of ER- tumors.

  18. Emaus MJ, Peeters PH, Bakker MF, Overvad K, Tjønneland A, Olsen A, et al.
    Am J Clin Nutr, 2016 Jan;103(1):168-77.
    PMID: 26607934 DOI: 10.3945/ajcn.114.101436
    BACKGROUND: The recent literature indicates that a high vegetable intake and not a high fruit intake could be associated with decreased steroid hormone receptor-negative breast cancer risk.

    OBJECTIVE: This study aimed to investigate the association between vegetable and fruit intake and steroid hormone receptor-defined breast cancer risk.

    DESIGN: A total of 335,054 female participants in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort were included in this study (mean ± SD age: 50.8 ± 9.8 y). Vegetable and fruit intake was measured by country-specific questionnaires filled out at recruitment between 1992 and 2000 with the use of standardized procedures. Cox proportional hazards models were stratified by age at recruitment and study center and were adjusted for breast cancer risk factors.

    RESULTS: After a median follow-up of 11.5 y (IQR: 10.1-12.3 y), 10,197 incident invasive breast cancers were diagnosed [3479 estrogen and progesterone receptor positive (ER+PR+); 1021 ER and PR negative (ER-PR-)]. Compared with the lowest quintile, the highest quintile of vegetable intake was associated with a lower risk of overall breast cancer (HRquintile 5-quintile 1: 0.87; 95% CI: 0.80, 0.94). Although the inverse association was most apparent for ER-PR- breast cancer (ER-PR-: HRquintile 5-quintile 1: 0.74; 95% CI: 0.57, 0.96; P-trend = 0.03; ER+PR+: HRquintile 5-quintile 1: 0.91; 95% CI: 0.79, 1.05; P-trend = 0.14), the test for heterogeneity by hormone receptor status was not significant (P-heterogeneity = 0.09). Fruit intake was not significantly associated with total and hormone receptor-defined breast cancer risk.

    CONCLUSION: This study supports evidence that a high vegetable intake is associated with lower (mainly hormone receptor-negative) breast cancer risk.

  19. Markt SC, Shui IM, Unger RH, Urun Y, Berg CD, Black A, et al.
    Prostate, 2015 Nov;75(15):1677-81.
    PMID: 26268879 DOI: 10.1002/pros.23035
    BACKGROUND: ABO blood group has been associated with risk of cancers of the pancreas, stomach, ovary, kidney, and skin, but has not been evaluated in relation to risk of aggressive prostate cancer.

    METHODS: We used three single nucleotide polymorphisms (SNPs) (rs8176746, rs505922, and rs8176704) to determine ABO genotype in 2,774 aggressive prostate cancer cases and 4,443 controls from the Breast and Prostate Cancer Cohort Consortium (BPC3). Unconditional logistic regression was used to calculate age and study-adjusted odds ratios and 95% confidence intervals for the association between blood type, genotype, and risk of aggressive prostate cancer (Gleason score ≥8 or locally advanced/metastatic disease (stage T3/T4/N1/M1).

    RESULTS: We found no association between ABO blood type and risk of aggressive prostate cancer (Type A: OR = 0.97, 95%CI = 0.87-1.08; Type B: OR = 0.92, 95%CI =n0.77-1.09; Type AB: OR = 1.25, 95%CI = 0.98-1.59, compared to Type O, respectively). Similarly, there was no association between "dose" of A or B alleles and aggressive prostate cancer risk.

    CONCLUSIONS: ABO blood type was not associated with risk of aggressive prostate cancer.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links