OBJECTIVE: To investigate the accuracy and safety of pedicle screws placed in adolescent idiopathic scoliosis (AIS) patients.
SUMMARY OF BACKGROUND DATA: The reported pedicle screws perforation rates for corrective AIS surgery vary widely from 1.2% to 65.0%. Knowledge regarding the safety of pedicle screws in scoliosis surgery is very important in preventing complications.
METHODS: This study investigates the accuracy and safety of pedicle screws placed in 140 AIS patients. CT scans were used to assess the perforations that were classified according to Rao et al (2002): grade 0, grade 1 (<2 mm), grade 2 (2-4 mm), and grade 3 (>4 mm). Anterior perforations were classified into grade 0, grade 1 (<4 mm), grade 2 (4-6 mm), and grade 3 (>6 mm). Grade 2 and 3 (excluding lateral grade 2 and 3 perforation over thoracic vertebrae) were considered as critical perforations.
RESULTS: A total of 2020 pedicle screws from 140 patients were analyzed. The overall total perforation rate was 20.3% (410 screws) with 8.2% (166 screws) grade 1, 2.9% (58 screws) grade 2 and 9.2% (186 screws) grade 3 perforations. Majority of the perforations was because of lateral perforation occurring over the thoracic region, as a result of application of extrapedicular screws at this region. When the lateral perforations of the thoracic region were excluded, the perforation rate was 6.4% (129 screws), grade 2, 1.4% (28 screws) and grade 3, 0.8% (16 screws). There were only two symptomatic left medial grade 2 perforations: one screw at T12 presented with postoperative iliac crest numbness and another screw at L2 presented with radicular pain that subsided with conservative treatment. There were six anterior perforations abutting the right lung, four anterior perforations abutting the aorta, two anterior perforations abutting the esophagus, and one abutting the trachea was noted.
CONCLUSION: Pedicle screws insertion in AIS has a total perforation rate of 20.3%. After exclusion of lateral thoracic perforations, the overall perforation rate was 8.6% with a critical perforation rate of 2.2% (44/2020). The rate of symptomatic screw perforation leading to radicular symptoms was 0.1%. There was no spinal cord, aortic, esophageal, or lung injuries caused by malpositioned screws in this study.
LEVEL OF EVIDENCE: 4.
METHODS: Three-dimensional computed tomographies of 180 subjects (60 from each ethnic) were analyzed. The length and angulations of C1LM screw and the location of internal carotid artery (ICA) in relation to C1LM were assessed and classified according to the classification by Murakami et al. The incidence of ponticulus posticus (PP) was determined and the differences among the population of these three ethnics were recorded.
RESULTS: The average base length was 8.5 ± 1.4 mm. The lengths within the lateral mass were between 14.7 ± 1.6 mm and 21.7 ± 2.3 mm. The prevalence of PP was 8.3%. 55.3% (199) of ICA were located in zone 0, 38.3% (138) in zone 1-1, 6.4% (23) in zone 1-2, and none in zone 1-3 and zone 2. The average angulation from the entry point to the ICA was 8.5° ± 6.4° laterally. The mean distance of ICA from C1 anterior cortex was 3.7 ± 1.7 mm (range: 0.6∼11.3). There was no difference in distribution of ICA in zone 1 among the three population (Chinese-47%, Indians-61%, and Malays-53%; p > 0.05).
CONCLUSIONS: No ICA is located medial to the entry point of C1LM screw. If bicortical purchase of C1LM screw is needed, screw protrusion of less than 3 mm or medially angulated is safe for ICA. The incidence of PP is 8.3% with higher prevalence among the Indian population.
PURPOSE: To study the surgical morphometry of C1 and C2 vertebrae in Chinese, Indian, and Malay patients.
OVERVIEW OF LITERATURE: C1 lateral mass and C2 pedicle screw fixation is gaining popularity. However, there is a lack of C1-C2 morphometric data for the Asian population.
METHODS: Computed tomography analysis of 180 subjects (60 subjects each belonging to Chinese, Indian, and Malay populations) using simulation software was performed. Length and angulations of C1 lateral mass (C1LM) and C2 pedicle (C2P) screws were assessed.
RESULTS: The predicted C1LM screw length was between 23.2 and 30.2 mm. The safe zone of trajectories was within 11.0°±7.7° laterally to 29.1°±6.2° medially in the axial plane and 37.0°±10.2° caudally to 20.9°±7.8° cephalically in the sagittal plane. The shortest and longest predicted C2P screw lengths were 22.1±2.8 mm and 28.5±3.2 mm, respectively. The safe trajectories were from 25.1° to 39.3° medially in the axial plane and 32.3° to 45.9° cephalically in the sagittal plane.
CONCLUSIONS: C1LM screw length was 23-30 mm with the axial safe zone from 11° laterally to 29° medially and sagittal safe zone at 21° cephalically. C2P screw length was 22-28 mm with axial safe zone from 26° to 40° medially and sagittal safe zone from 32° to 46° cephalically. These data serve as an important reference for Chinese, Indian, and Malay populations during C1-C2 instrumentation.
PURPOSE: This study compared cervical supine side-bending (CSSB) and cervical supine traction (CST) radiographs to assess the flexibility and predict the correctability of the proximal thoracic (PT) curve for patients with adolescent idiopathic scoliosis (AIS) classified as Lenke 1 and 2.
OVERVIEW OF LITERATURE: Knowledge of the flexibility of the PT curve is crucial in the management of patients with AIS. There are no reports comparing CSSB and CST radiographs to assess this parameter.
METHODS: Thirty patients with Lenke 1 and 2 AIS scheduled for posterior spinal fusion surgery were recruited. A standing whole spine radiography and physician-supervised CSSB and CST radiographies were performed. Patient demographic and radiological parameters were recorded, including age, gender, weight, height, body mass index, PT angle, main thoracic angle, CSSB PT angle, CST PT angle, and postoperative PT angle. From the data collected, the curve flexibility and curve correction index were calculated and compared.
RESULTS: CSSB had a significantly (p <0.05) smaller PT angle (16.6°±10.4°) in comparison to CST (23.7°±10.7°). CSSB had significantly (p <0.05) greater flexibility (44.2%±19.7%) in comparison to CST (19.5%±18.1%). The CSSB correction index (1.2±0.9) was significantly closer to 1 in comparison to the CST correction index (4.4±5.3). There was no difference (p =0.72) between the CSSB PT angle (16.6°±10.4°) and the postoperative PT angle (16.1°±7.5°). However, the CST PT angle (23.7°±10.7°) was significantly (p <0.05) larger than the postoperative PT angle (16.1°±7.5°).
CONCLUSIONS: CSSB radiographs were better for demonstrating PT flexibility and more accurately predicted correctability in comparison to the CST radiographs.
PURPOSE: To evaluate the feasibility of percutaneous posterolateral fusion in the spine utilizing rhBMP-2.
STUDY DESIGN: Animal study.
METHODS: This is an animal research model involving 32 New Zealand white rabbits stratified into 4 study groups: control, autogenous iliac crest bone graft (ICBG), demineralized bone matrix (DBM), and rhBMP-2 groups, with 8 study subjects per group. The rhBMP-2 group was subdivided into the open technique (right side) and the percutaneous technique groups (left side). Fusion was graded at 6 weeks and 3 months after plain radiography, computed tomography, and clinical assessment with the following grading system: grade A, no bone formation; grade B, non-bridging bone formation; grade C, fusion; and grade D, fusion with ectopic bone formation.
RESULTS: No fusion was noted in the placebo and the DBM groups. However, in the DBM group, bone formation occurred in 37.5% of the subjects. The rhBMP-2 group had a higher fusion rate compared with the ICBG group at 6 weeks and 3 months. The fusion rate for the ICBG, the rhBMP-2 (open), and the rhBMP-2 (percutaneous) groups were 37.5%, 87.5%, and 50.0% at 6 weeks and 50.0%, 100.0%, and 62.5% at 3 months, respectively. Ectopic bone formation occurred in 12.5% of the cases in the rhBMP-2 (percutaneous) group and in 25.0% of the cases in the rhBMP-2 (open) group.
CONCLUSIONS: Usage of rhBMP-2 is feasible for percutaneous posterolateral fusion of the lumbar spine in this animal model. However, a more precise delivery system might improve the fusion rate when the percutaneous technique is used. A significant rate of ectopic bone formation occurred when rhBMP-2 was used.
METHODS: Lenke 1 and 2 adolescent idiopathic scoliosis (AIS) patients who underwent instrumented posterior spinal fusion (PSF) surgery from two centres between June 2014 and December 2015 were prospectively recruited into this study. The patients were grouped into Group 1 (single surgeon) and Group 2 (two surgeons). One to one matching using 'prospective propensity score-matched cohort patient sampling method' was done. The surgery was divided into six stages: stage 1-exposure, stage 2-screw insertion, stage 3-release, stage 4-correction, stage 5-corticotomies and bone grafting and stage 6-closure.
RESULTS: A total of 116 patients were recruited. Of 86 patients who were operated by the two surgeons, 30 patients were matched with 30 patients that were operated by a single surgeon. Operation duration was significantly longer in Group 1 (257.3 ± 51.4 min) compared to Group 2 (164.0 ± 25.7 min). The total blood loss was significantly higher in Group 1 (1254.7 ± 521.5 mL) compared to Group 2 (893.7 ± 518.4 mL). Total blood loss/level fused was significantly higher in Group 1 (117.5 ± 42.8 mL/level) compared to Group 2 (82.6 ± 39.4 mL/level). Group 1 had significantly higher blood loss and blood loss/level fused for stages 1, 2 and 3. Group 2 had lower incidence of allogenic blood transfusion.
CONCLUSIONS: In PSF surgery for AIS patients, two-surgeon strategy was associated with shorter operation duration, lesser blood loss and lower incidence of allogenic blood transfusion.
METHODS: 104 AIS patients with 1524 pedicle screws were evaluated using CT scan. 302 screws were inserted in dysplastic pedicles using fluoroscopic guidance technique. 155 screws were inserted using a cannulated system (Group 1), whereas 147 screws were inserted using standard screws (Group 2). The pedicle perforations were assessed using a classification by Rao et al.; G0: no violation; G1: <2 mm perforation; G2: 2-4 mm perforation; and G3: >4 mm perforation). For anterior perforations, the pedicle perforations were assessed using a modified grading system (Grade 0: no violation, Grade 1: less than 4 mm perforation; Grade 2: 4 mm to 6 mm perforation; and Grade 3: more than 6 mm perforation).
RESULTS: The perforation rate in Group 1 was 4.5% and in Group 2 was 15.6% (p = 0.001). Most of the perforations were anterior perforations (53.3%). The anterior perforation rate in Group 1 was 1.9% compared to 8.8% in Group 2 (p = 0.009). Group 1 has a medial perforation rate of 1.3% compared to Group 2, 6.1% (p = 0.031). The rate of critical pedicle perforation in Group 1 was 2.6% and in Group 2 was 6.8% (p = 0.102). In Group 1, there were no critical medial perforation but there was one G2 lateral perforation, one G2 superior perforation and two G3 anterior perforations. In Group 2, there were three G2 medial perforations, one G2 lateral perforation, one G2 anterior perforation and five G3 anterior perforations.
CONCLUSION: Usage of cannulated screw system significantly increases the accuracy of pedicle screw insertion in dysplastic pedicles in AIS.
OBJECTIVE: To analyze the amount of blood loss at different stages of Posterior Instrumented Spinal Fusion (PSF) surgery in adolescent idiopathic scoliosis (AIS) patients.
SUMMARY OF BACKGROUND DATA: Knowing the pattern of blood loss at different surgical stages may enable the surgical team to formulate a management strategy to reduce intraoperative blood loss.
METHODS: One hundred AIS patients who underwent PSF from January 2013 to December 2014 were recruited. The operation was divided into six stages; stage 1-exposure, stage 2-screw insertion, stage 3-release, stage 4-correction, stage 5-corticotomies and bone grafting, and stage 6-closure. The duration and blood loss at each stage was documented. The following values were calculated: total blood loss, blood loss per estimated blood volume, blood loss per minute, blood loss per vertebral level fused, and blood loss per minute per vertebral level fused.
RESULTS: There were 89 females and 11 males. The mean age was 17.0 ± 5.8 years old. Majority (50.0%) were Lenke 1 curve type. The mean preoperative major Cobb angle was 64.9 ± 15.0°. The mean number of levels fused was 9.5 ± 2.3 levels. The mean operating time was 188.5 ± 53.4 minutes with a mean total blood loss 951.0 ± 454.0 mLs. The highest mean blood loss occurred at stage 2 (301.0 ± 196.7 mL), followed by stage 4 (226.8 ± 171.2 mL) and stage 5 (161.5 ± 146.6 mL). The highest mean blood loss per minute was at stage 5 (17.1 ± 18.3 mL/min), followed by stage 3 (12.0 ± 10.8 mL/min). The highest mean blood loss per vertebral levels fused was at stage 2 (31.0 ± 17.7 mL/level), followed by stage 4 (23.9 ± 18.1 mL/level) and stage 5 (16.6 ± 13.3 mL/level).
CONCLUSION: All stages were significant contributors to the total blood loss except exposure (stage 1) and closure (stage 6). Blood loss per minute and blood loss per minute per level was highest during corticotomies (stage 5), followed by release (stage 3). However, the largest amount of total blood loss occurred during screw insertion (stage 2).
LEVEL OF EVIDENCE: 2.