Displaying publications 41 - 42 of 42 in total

Abstract:
Sort:
  1. Wan Othman WNN, Liew SY, Khaw KY, Murugaiyah V, Litaudon M, Awang K
    Bioorg Med Chem, 2016 09 15;24(18):4464-4469.
    PMID: 27492195 DOI: 10.1016/j.bmc.2016.07.043
    Alzheimer's disease is the most common form of dementia among older adults. Acetylcholinesterase and butyrylcholinesterase are two enzymes involved in the breaking down of the neurotransmitter acetylcholine. Inhibitors for these enzymes have potential to prolong the availability of acetylcholine. Hence, the search for such inhibitors especially from natural products is needed in developing potential drugs for Alzheimer's disease. The present study investigates the cholinesterase inhibitory activity of compounds isolated from three Cryptocarya species towards acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Nine alkaloids were isolated; (+)-nornantenine 1, (-)-desmethylsecoantofine 2, (+)-oridine 3, (+)-laurotetanine 4 from the leaves of Cryptocarya densiflora BI., atherosperminine 5, (+)-N-methylisococlaurine 6, (+)-N-methyllaurotetanine 7 from the bark of Cryptocarya infectoria Miq., 2-methoxyatherosperminine 8 and (+)-reticuline 9 from the bark of Cryptocarya griffithiana Wight. In general, most of the alkaloids showed higher inhibition towards BChE as compared to AChE. The phenanthrene type alkaloid; 2-methoxyatherosperminine 8, exhibited the most potent inhibition against BChE with IC50 value of 3.95μM. Analysis of the Lineweaver-Burk (LB) plot of BChE activity over a range of substrate concentration suggested that 2-methoxyatherosperminine 8 exhibited mixed-mode inhibition with an inhibition constant (Ki) of 6.72μM. Molecular docking studies revealed that 2-methoxyatherosperminine 8 docked well at the choline binding site and catalytic triad of hBChE (butyrylcholinesterase from Homo sapiens); hydrogen bonding with Tyr 128 and His 438 residues respectively.
  2. Zahari A, Cheah FK, Mohamad J, Sulaiman SN, Litaudon M, Leong KH, et al.
    Planta Med, 2014 May;80(7):599-603.
    PMID: 24723007 DOI: 10.1055/s-0034-1368349
    The crude extract of the bark of Dehaasia longipedicellata exhibited antiplasmodial activity against the growth of Plasmodium falciparum K1 isolate (resistant strain). Phytochemical studies of the extract led to the isolation of six alkaloids: two morphinandienones, (+)-sebiferine (1) and (-)-milonine (2); two aporphines, (-)-boldine (3) and (-)-norboldine (4); one benzlyisoquinoline, (-)-reticuline (5); and one bisbenzylisoquinoline, (-)-O-O-dimethylgrisabine (6). Their structures were determined on the basis of 1D and 2D NMR, IR, UV, and LCMS spectroscopic techniques and upon comparison with literature values. Antiplasmodial activity was determined for all of the isolated compounds. They showed potent to moderate activity with IC50 values ranging from 0.031 to 30.40 µM. (-)-O-O-dimethylgrisabine (6) and (-)-milonine (2) were the two most potent compounds, with IC50 values of 0.031 and 0.097 µM, respectively, that were comparable to the standard, chloroquine (0.090 µM). The compounds were also assessed for their antioxidant activities with di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (IC50 = 18.40-107.31 µg/mL), reducing power (27.40-87.40 %), and metal chelating (IC50 = 64.30 to 257.22 µg/mL) having good to low activity. (-)-O-O-dimethylgrisabine (6) exhibited a potent antioxidant activity of 44.3 % reducing power, while di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium and metal chelating activities had IC50 values of 18.38 and 64.30 µg/mL, respectively. Thus it may be considered as a good reductant with the ability to chelate metal and prevent pro-oxidant activity. In addition to the antiplasmodial and antioxidant activities, the isolated compounds were also tested for their cytotoxicity against a few cancer and normal cell lines. (-)-Norboldine (4) exhibited potent cytotoxicity towards pancreatic cancer cell line BxPC-3 with an IC50 value of 27.060 ± 1.037 µM, and all alkaloids showed no toxicity towards the normal pancreatic cell line (hTERT-HPNE).
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links