Displaying publications 41 - 60 of 91 in total

Abstract:
Sort:
  1. Li C, Gao P, Yu R, Zhong H, Wu M, Lam SS, et al.
    Environ Sci Ecotechnol, 2023 Apr;14:100259.
    PMID: 36949895 DOI: 10.1016/j.ese.2023.100259
  2. Li C, Zhong H, Meng L, Wu M, Ning W, Lam SS, et al.
    Environ Sci Ecotechnol, 2024 Jul;20:100369.
    PMID: 38318213 DOI: 10.1016/j.ese.2023.100369
    •Dumping of Fukushima's radioactive wastewater raises marine food web concern.•Tritium seems to be the most problematic compound.•Long-lived radioisotopes Biomagnify up to 50,000 folds in marine fish species.•This threatens fragile deep-sea ecosystems requiring immediate action.•Empowered Routine monitoring is crucial to maintain planetary health.
  3. Peng W, Ma NL, Zhang D, Zhou Q, Yue X, Khoo SC, et al.
    Environ Res, 2020 12;191:110046.
    PMID: 32841638 DOI: 10.1016/j.envres.2020.110046
    Locusts differ from ordinary grasshoppers in their ability to swarm over long distances and are among the oldest migratory pests. The ecology and biology of locusts make them among the most devastating pests worldwide and hence the calls for actions to prevent the next outbreaks. The most destructive of all locust species is the desert locust (Schistocerca gregaria). Here, we review the current locust epidemic 2020 outbreak and its causes and prevention including the green technologies that may provide a reference for future directions of locust control and food security. Massive locust outbreaks threaten the terrestrial environments and crop production in around 100 countries of which Ethiopia, Somalia and Kenya are the most affected. Six large locust outbreaks are reported for the period from 1912 to 1989 all being closely related to long-term droughts and warm winters coupled with occurrence of high precipitation in spring and summer. The outbreaks in East Africa, India and Pakistan are the most pronounced with locusts migrating more than 150 km/day during which the locusts consume food equivalent to their own body weight on a daily basis. The plague heavily affects the agricultural sectors, which is the foundation of national economies and social stability. Global warming is likely the main cause of locust plague outbreak in recent decades driving egg spawning of up to 2-400,000 eggs per square meter. Biological control techniques such as microorganisms, insects and birds help to reduce the outbreaks while reducing ecosystem and agricultural impacts. In addition, green technologies such as light and sound stimulation seem to work, however, these are challenging and need further technological development incorporating remote sensing and modelling before they are applicable on large-scales. According to the Food and Agriculture Organization (FAO) of the United Nations, the 2020 locust outbreak is the worst in 70 years probably triggered by climate change, hurricanes and heavy rain and has affected a total of 70,000 ha in Somalia and Ethiopia. There is a need for shifting towards soybean, rape, and watermelon which seems to help to prevent locust outbreaks and obtain food security. Furthermore, locusts have a very high protein content and is an excellent protein source for meat production and as an alternative human protein source, which should be used to mitigate food security. In addition, forestation of arable land improves local climate conditions towards less precipitation and lower temperatures while simultaneously attracting a larger number of birds thereby increasing the locust predation rates.
  4. Lam SS, Chew KW, Show PL, Ma NL, Ok YS, Peng W, et al.
    Environ Res, 2020 11;190:109966.
    PMID: 32829186 DOI: 10.1016/j.envres.2020.109966
    Two of the world most endangered marine and terrestrial species are at the brink of extinction. The vaquita (Phocoena sinus) is the smallest existing cetacean and the population has declined to barely 22 individuals now remaining in Mexico's Gulf of California. With the ongoing decline, it is likely to go extinct within few years. The primary threat to this species has been mortality as a result of by-catch from gillnet fishing as well as environmental toxic chemicals and disturbance. This has called for the need to establish a National Park within the Gulf of California to expand essential habitat and provide the critical ecosystem protection for vaquita to thrive and multiply, given that proper conservation enforcement and management of the park are accomplished. In the terrestrial environment, the cheetah (Acinonyx jubatus) is reduced to a low number worldwide with the Iran subpopulation currently listed as Critically Endangered and the Indian subpopulation already extinct. There is a need for conservation efforts due to habitat loss, but also an indication of the conspicuous threat of illegal trade and trafficking from Africa and Arab countries in the Middle East. Funds have also been set up to provide refuges for the cheetah by working directly with farmers and landowners, which is a critical movement in adaptive management. These are the potential options for the preservation and possibly the expansion of the overall vaquita and cheetah populations.
  5. Ma NL, Peng W, Soon CF, Noor Hassim MF, Misbah S, Rahmat Z, et al.
    Environ Res, 2021 Feb;193:110405.
    PMID: 33130165 DOI: 10.1016/j.envres.2020.110405
    The recently emerged coronavirus disease (COVID-19), which has been characterised as a pandemic by the World Health Organization (WHO), is impacting all parts of human society including agriculture, manufacturing, and tertiary sectors involving all service provision industries. This paper aims to give an overview of potential host reservoirs that could cause pandemic outbreak caused by zoonotic transmission. Amongst all, continues surveillance in slaughterhouse for possible pathogens transmission is needed to prevent next pandemic outbreak. This paper also summarizes the potential threats of pandemic to agriculture and aquaculture sector that control almost the total food supply chain and market. The history lesson from the past, emerging and reemerging infectious disease including the Severe Acute Respiratory Syndrome (SARS) in 2002, Influenza A H1N1 (swine flu) in 2009, Middle East Respiratory Syndrome (MERS) in 2012 and the recent COVID-19 should give us some clue to improve especially the governance to be more ready for next coming pandemic.
  6. Peng W, Sonne C, Lam SS, Ok YS, Alstrup AKO
    Environ Res, 2020 02;181:108887.
    PMID: 31732170 DOI: 10.1016/j.envres.2019.108887
    The Amazon rainforest has sustained human existence for more than 10,000 years. Part of this has been the way that the forest controls regional climate including precipitation important for the ecosystem as well as agroforestry and farming. In addition, the Amazon also affects the global weather systems, so cutting down the rainforest significantly increases the effects of climate change, threatening the world's biodiversity and causing local desertification and soil erosion. The current fire activities and deforestation in the Amazon rainforest therefore have consequences for global sustainability. In the light of this, the current decisions made in Brazil regarding an increase in Amazon deforestation require policy changes if the global ecosystems and biodiversity are not to be set to collapse. There is only one way to move forward and that is to increase efforts in sustainable development of the region including limitation in deforestation and to continuously measure and monitor the development. The G7 countries have offered Brazil financial support for at least 20 million euros for fighting the forest fires but the president denies receiving such financial support and says that it is more relevant to raise new forests in Europe. In fact, this is exactly what is happening in Denmark and China in order to reduce climate change. Such activities should be global and include South America, Europe, Africa and Asia where deforestation is important issue. Forest restoration reduces climate change, desertification, and preserves both the regional tropical and global environment if the wood is not burned at a later stage but instead used in e.g. roads as filling material. Changes are therefore needed through improved international understanding and agreements to better avoid the global climate changes, from cutting down the precious rainforest before it is too late as rainforest cannot be re-planted.
  7. Khoo SC, Goh MS, Alias A, Luang-In V, Chin KW, Ling Michelle TH, et al.
    Environ Res, 2022 Dec;215(Pt 1):114218.
    PMID: 36049514 DOI: 10.1016/j.envres.2022.114218
    The tremendous rise in the consumption of antimicrobial products had aroused global concerns, especially in the midst of pandemic COVID-19. Antimicrobial resistance has been accelerated by widespread usage of antimicrobial products in response to the COVID-19 pandemic. Furthermore, the widespread use of antimicrobial products releases biohazardous substances into the environment, endangering the ecology and ecosystem. Therefore, several strategies or measurements are needed to tackle this problem. In this review, types of antimicrobial available, emerging nanotechnology in antimicrobial production and their advanced application have been discussed. The problem of antimicrobial resistance (AMR) due to antibiotic-resistant bacteria (ARB)and antimicrobial resistance genes (AMG) had become the biggest threat to public health. To deal with this problem, an in-depth discussion of the challenges faced in antimicrobial mitigations and potential alternatives was reviewed.
  8. Shi Y, Jiang J, Ye H, Sheng Y, Zhou Y, Foong SY, et al.
    Environ Res, 2023 Feb 01;218:114967.
    PMID: 36455630 DOI: 10.1016/j.envres.2022.114967
    We analyzed the problematic textile fiber waste as potential precursor material to produce multilayer cotton fiber biocomposite. The properties of the products were better than the current dry bearing type particleboards and ordinary dry medium-density fiberboard in terms of the static bending strength (67.86 MPa), internal bonding strength (1.52 MPa) and water expansion rate (9.57%). The three-layer, four-layer and five-layer waste cotton fiber composite (WCFC) were tried in the experiment, the mechanical properties of the three-layer WCFC are insufficient, the five-layer WCFC is too thick and the four-layer WCFC had the best comprehensive performance. The cross-section morphology of the four-layer WCFC shows a dense structure with a high number of adhesives attached to the fiber. The hardness and stiffness of the four-layer cotton fiber composite enhanced by the high crystallinity of cellulose content, and several chemical bondings were presence in the composites. Minimum mass loss (30%) and thermal weight loss rate (0.70%/°C) was found for the four-layer WCFC. Overall, our findings suggested that the use of waste cotton fiber (WCF) to prepare biocomposite with desirable physical and chemical properties is feasible, and which can potentially be used as building material, furniture and automotive applications.
  9. Gu H, Yan J, Liu Y, Yu X, Feng Y, Yang X, et al.
    Environ Res, 2023 May 01;224:115543.
    PMID: 36822540 DOI: 10.1016/j.envres.2023.115543
    Bioaugmentation helps to obtain a microbiome capable of remediating polycyclic aromatic hydrocarbons (PAHs). In this study, acclimation of microorganisms to soil supplemented with phenanthrene (PHE) led to enrichment with PAH-degraders, including those in Actinobacteriota and in the genera Streptomyces, Rhodococcus, Nocardioides, Sphingomonas, and Mycobacterium. Aqueous (28 °C, pH 6.5) and soil cultures inoculated with PHE-acclimated soil showed a high PHE (ca. 50 mg L-1) degradation efficiency. The PHE degradation kinetics in aqueous and soil incubations fitted to the Gompertz equation and the first-order kinetic equation, respectively. Indigenous microorganisms adapted to PHE in their environment, and this increased their capacity to degrade PHE. The effect of co-contaminants and pathway intermediates on PHE degradation showed that the degradation of PHE improved in the presence of diesel while being hindered by lubricant oil, catechol, salicylic and phthalic acid. Our findings provide theoretical and practical support for bioremediationof PAHs in the environment.
  10. Yue X, Ling Ma N, Zhong J, Yang H, Chen H, Yang Y, et al.
    Environ Res, 2024 Jan 15;241:117474.
    PMID: 37879390 DOI: 10.1016/j.envres.2023.117474
    Here, we collected 154 plant species in China ancient forests looking for novel efficient bioactive compounds for cancer treatments. We found 600 bioactive phyto-chemicals that induce apoptosis of liver cancer cell in vitro. First, we screen the plant extract's in vitro cytotoxicity inhibition of cancer cell growth using in vitro HepG2 cell lines and MTT cytotoxicity. The results from these initial MTT in vitro cytotoxicity tests show that the most efficient plants towards hepatoma cytoxicity is Cephalotaxus sinensis, mint bush (Elsholtzia stauntonii) and winged spindle tree (Euonymus alatus). We then used in cell-counting kit-8 (CCK-8) to further understand in vivo tumor growth using nude mice and GC-MS and LC-QTOF-MS to analyze the composition of compounds in the extracts. Extracted chemically active molecules analyzed by network pharmacology showed inhibition on the growth of liver cancer cells by acting on multiple gene targets, which is different from the currently used traditional drugs acting on only one target of liver cancer cells. Extracts from Cephalotaxus sinensis, mint bush (Elsholtzia stauntonii) and winged spindle tree (Euonymus alatus) induce apoptosis in hepatoma cancer cell line HepG2 with a killing rate of more than 83% and a tumor size decrease by 62-67% and a killing rate of only 6% of normal hepatocyte LO2. This study highlight efficient candidate species for cancer treatment providing a basis for future development of novel plant-based drugs to help meeting several of the UN SDGs and planetary health.
  11. Khoo SC, Zhang N, Luang-In V, Goh MS, Sonne C, Ma NL
    Environ Res, 2024 Feb 11;250:118441.
    PMID: 38350544 DOI: 10.1016/j.envres.2024.118441
    This review delves into the escalating concern of environmental pollutants and their profound impact on human health in the context of the modern surge in global diseases. The utilisation of chemicals in food production, which results in residues in food, has emerged as a major concern nowadays. By exploring the intricate relationship between environmental pollutants and gut microbiota, the study reveals a dynamic bidirectional interplay, as modifying microbiota profile influences metabolic pathways and subsequent brain functions. This review will first provide an overview of potential exposomes and their effect to gut health. This paper is then emphasis the connection of gut brain function by analysing microbiome markers with neurotoxicity responses. We then take pesticide as example of exposome to elucidate their influence to biomarkers biosynthesis pathways and subsequent brain functions. The interconnection between neuroendocrine and neuromodulators elements and the gut-brain axis emerges as a pivotal factor in regulating mental health and brain development. Thus, manipulation of gut microbiota function at the onset of stress may offer a potential avenue for the prevention and treatment for mental disorder and other neurodegenerative illness.
  12. Ma NL, Lam SD, Che Lah WA, Ahmad A, Rinklebe J, Sonne C, et al.
    Environ Pollut, 2021 Oct 01;286:117214.
    PMID: 33971466 DOI: 10.1016/j.envpol.2021.117214
    Salinisation of soil is associated with urban pollution, industrial development and rising sea level. Understanding how high salinity is managed at the plant cellular level is vital to increase sustainable farming output. Previous studies focus on plant stress responses under salinity tolerance. Yet, there is limited knowledge about the mechanisms involved from stress state until the recovery state; our research aims to close this gap. By using the most tolerance genotype (SS1-14) and the most susceptible genotype (SS2-18), comparative physiological, metabolome and post-harvest assessments were performed to identify the underlying mechanisms for salinity stress recovery in plant cells. The up-regulation of glutamine, asparagine and malonic acid were found in recovered-tolerant genotype, suggesting a role in the regulation of panicle branching and spikelet formation for survival. Rice could survive up to 150 mM NaCl (∼15 ds/m) with declined of production rate 5-20% ranged from tolerance to susceptible genotype. This show that rice farming may still be viable on the high saline affected area with the right selection of salt-tolerant species, including glycophytes. The salt recovery biomarkers identified in this study and the adaption underlined could be empowered to address salinity problem in rice field.
  13. Li Z, He Y, Sonne C, Lam SS, Kirkham MB, Bolan N, et al.
    Environ Pollut, 2023 Feb 15;319:120964.
    PMID: 36584860 DOI: 10.1016/j.envpol.2022.120964
    Radionuclides released from nuclear contamination harm the environment and human health. Nuclear pollution spread over large areas and the costs associated with decontamination is high. Traditional remediation methods include both chemical and physical, however, these are expensive and unsuitable for large-scale restoration. Bioremediation is the use of plants or microorganisms to remove pollutants from the environment having a lower cost and can be upscaled to eliminate contamination from soil, water and air. It is a cheap, efficient, ecologically, and friendly restoration technology. Here we review the sources of radionuclides, bioremediation methods, mechanisms of plant resistance to radionuclides and the effects on the efficiency of biological adsorption. Uptake of radionuclides by plants can be facilitated by the addition of appropriate chemical accelerators and agronomic management, such as citric acid and intercropping. Future research should accelerate the use of genetic engineering and breeding techniques to screen high-enrichment plants. In addition, field experiments should be carried out to ensure that this technology can be applied to the remediation of nuclear contaminated sites as soon as possible.
  14. Guo K, Yan L, He Y, Li H, Lam SS, Peng W, et al.
    Environ Pollut, 2023 Apr 01;322:121130.
    PMID: 36693585 DOI: 10.1016/j.envpol.2023.121130
    With the synchronous development of highway construction and the urban economy, automobiles have entered thousands of households as essential means of transportation. This paper reviews the latest research progress in using phytoremediation technology to remediate the environmental pollution caused by automobile exhaust in recent years, including the prospects for stereoscopic forestry. Currently, most automobiles on the global market are internal combustion vehicles using fossil energy sources as the primary fuel, such as gasoline, diesel, and liquid or compressed natural gas. The composition of vehicle exhaust is relatively complex. When it enters the atmosphere, it is prone to a series of chemical reactions to generate various secondary pollutants, which are very harmful to human beings, plants, animals, and the eco-environment. Despite improving the automobile fuel quality and installing exhaust gas purification devices, helping to reduce air pollution, the treatment costs of these approaches are expensive and cannot achieve zero emissions of automobile exhaust pollutants. The purification of vehicle exhaust by plants is a crucial way to remediate the environmental pollution caused by automobile exhaust and improve the environment along the highway by utilizing the ecosystem's self-regulating ability. Therefore, it has become a global trend to use phytoremediation technology to restore the automobile exhaust pollution. Now, there is no scientific report or systematic review about how plants absorb vehicle pollutants. The screening and configuration of suitable plant species is the most crucial aspect of successful phytoremediation. The mechanisms of plant adsorption, metabolism, and detoxification are reviewed in this paper to address the problem of automobile exhaust pollution.
  15. Qu Y, Yang Y, Sonne C, Chen X, Yue X, Gu H, et al.
    Environ Pollut, 2023 Nov 01;336:122417.
    PMID: 37598935 DOI: 10.1016/j.envpol.2023.122417
    Industrialization and overpopulation have polluted aquatic environments with significant impacts on human health and wildlife. The main pollutants in urban sewage are nitrogen, phosphorus, heavy metals and organic pollutants, which need to be treated with sewage, and the use of aquatic plants to purify wastewater has high efficiency and low cost. However, the effectiveness and efficiency of phytoremediation are also affected by temperature, pH, microorganisms and other factors. The use of biochar can reduce the cost of wastewater purification, and the combination of biochar and nanotechnology can improve the efficiency of wastewater purification. Some aquatic plants can enrich pollutants in wastewater, so it can be considered to plant these aquatic plants in constructed wetlands to achieve the effect of purifying wastewater. Biochar treatment technology can purify wastewater with high efficiency and low cost, and can be further applied to constructed wetlands. In this paper, the latest research progress of various pollutants in wastewater purification by aquatic plants is reviewed, and the efficient treatment technology of wastewater by biochar is discussed. It provides theoretical basis for phytoremediation of urban sewage pollution in the future.
  16. Dong CD, Huang CP, Chen CW, Lam SS, Sonne C, Kang CK, et al.
    Environ Pollut, 2024 Feb 15;343:123173.
    PMID: 38110049 DOI: 10.1016/j.envpol.2023.123173
    Polycyclic aromatic hydrocarbons (PAHs) are critical environmental concerns due to their intrinsic toxic aromatic nature and concomitant circumstances that potentially harm the ecological and human health. In this study, converting mahogany (Swietenia macrophylla King) pericarps to value-added biochar by pyrolysis for evaluating the potential formation/destruction of biochar-bound PAHs was studied for the first time. This study designed and optimized the thermal processing conditions at 300-900 °C in the CO2 or N2 atmosphere, and heteroatoms (N, O, B, NB, and NS) were modified for mahogany pericarps biochar (MPBC) production. The MPBC500 exhibited significantly higher pyrolysis products of PAHs (2780 ± 38 ng g-1) than that of MPBC900 (78 ± 6 ng g-1) under N2 without introducing modified elements. Specifically, the inhibition capacity of MPBC500 for PAHs under CO2 was improved most efficiently by the active nitrogen species of the pyridinic N and pyrrolic N groups. The pyrolysis conditions and heteroatom modification of MPBC altered its physicochemical properties, that is, aromaticity and hydrophobicity, affecting the PAH concentration and composition in the pyrolysis products. This study reveals sustainable approaches to reduce the environmental footprint of biochar by focusing on increases in PAHs pollution in sustainable biochar produced from a low-carbon bioeconomy perspective.
  17. Lam SS, McPartland M, Noori B, Garbus SE, Lierhagen S, Lyngs P, et al.
    Environ Int, 2020 04;137:105582.
    PMID: 32086081 DOI: 10.1016/j.envint.2020.105582
    Here we investigate if lead may be a contributing factor to the observed population decline in a Baltic colony of incubating eiders (Somateria mollissima). Body mass and blood samples were obtained from 50 incubating female eiders at the Baltic breeding colony on Christiansø during spring 2017 (n = 27) and 2018 (n = 23). All the females were sampled twice during early (day 4) and late (day 24) incubation. The full blood was analysed for lead to investigate if the concentrations exceeded toxic thresholds or changed over the incubation period due to remobilisation from bones and liver tissue. Body mass, hatch date and number of chicks were also analysed with respect to lead concentrations. The body mass (mean ± SD g) increased significantly in the order: day 24 in 2018 (1561 ± 154 g) C and N isotope analyses to find the lead sources(s) in the course of the annual cycle and how it may affect the population dynamics of the Christiansø colony which reflects the ecology of the Baltic eiders being suitable for biomonitoring the overall flyway.
  18. Sonne C, Siebert U, Gonnsen K, Desforges JP, Eulaers I, Persson S, et al.
    Environ Int, 2020 06;139:105725.
    PMID: 32311628 DOI: 10.1016/j.envint.2020.105725
    Here we review contaminant exposure and related health effects in six selected Baltic key species. Sentinel species included are common eider, white-tailed eagle, harbour porpoise, harbour seal, ringed seal and grey seal. The review represents the first attempt of summarizing available information and baseline data for these biomonitoring key species exposed to industrial hazardous substances focusing on anthropogenic persistent organic pollutants (POPs). There was only limited information available for white-tailed eagles and common eider while extensive information exist on POP exposure and health effects in the four marine mammal species. Here we report organ-tissue endpoints (pathologies) and multiple biomarkers used to evaluate health and exposure of key species to POPs, respectively, over the past several decades during which episodes of significant population declines have been reported. Our review shows that POP exposure affects the reproductive system and survival through immune suppression and endocrine disruption, which have led to population-level effects on seals and white-tailed eagles in the Baltic. It is notable that many legacy contaminants, which have been banned for decades, still appear to affect Baltic wildlife. With respect to common eiders, changes in food composition, quality and contaminant exposure seem to have population effects which need to be investigated further, especially during the incubation period where the birds fast. Since new industrial contaminants continuously leak into the environment, we recommend continued monitoring of them in sentinel species in the Baltic, identifying possible effects linked to climate change, and modelling of population level effects of contaminants and climate change.
  19. Lam SS, Tjørnløv RS, Therkildsen OR, Christensen TK, Madsen J, Daugaard-Petersen T, et al.
    Environ Int, 2020 09;142:105873.
    PMID: 32585505 DOI: 10.1016/j.envint.2020.105873
    Blood plasma was collected during 2016-2018 from healthy incubating eiders (Somateria molissima, n = 183) in three Danish colonies, and healthy migrating pink-footed geese (Anser brachyrhynchus, n = 427) at their spring roost in Central Norway (Svalbard breeding population) and their novel flyway through the Finnish Baltic Sea (Russian breeding population). These species and flyways altogether represent terrestrial, brackish and marine ecosystems spanning from the Western to the Eastern and Northern part of the Baltic Sea. Plasma of these species was analysed for seroprevalence of specific avian influenza A (AI) antibodies to obtain information on circulating AI serotypes and exposure. Overall, antibody prevalence was 55% for the eiders and 47% for the pink-footed geese. Of AI-antibody seropositive birds, 12% (22/183) of the eiders and 3% (12/427) of the pink-footed geese had been exposed to AI of the potentially zoonotic serotypes H5 and/or H7 virus. AI seropositive samples selected at random (n = 33) showed a low frequency of serotypes H1, H6 and H9. Future projects should aim at sampling and isolating AI virus to characterize dominant serotypes and virus strains (PCR). This will increase our understanding of how AI exposure may affect health, breeding and population viability of Baltic common eiders and pink-footed geese as well as the potential spill-over to humans (zoonotic potential).
  20. Ma NL, Hansen M, Roland Therkildsen O, Kjær Christensen T, Skjold Tjørnløv R, Garbus SE, et al.
    Environ Int, 2020 09;142:105866.
    PMID: 32590281 DOI: 10.1016/j.envint.2020.105866
    The Baltic/Wadden Sea Flyway of common eiders has declined over the past three decades. Multiple factors such as contaminant exposure, global warming, hunting, white-tailed eagle predation, decreased agricultural eutrophication and infectious diseases have been suggested to explain the decline. We collected information on body mass, mercury (Hg) concentration, biochemistry and untargeted metabolomics of incubating birds in two colonies in the Danish Straits (Hov Røn, n = 100; Agersø, n = 29) and in one colony in the Baltic proper (Christiansø, n = 23) to look into their metabolisms and energy balance. Body mass was available from early and late incubation for Hov Røn and Christiansø, showing a significant decline (25-30%) in both colonies with late body mass at Christiansø being the lowest. Whole blood concentrations of total mercury Hg were significantly higher in birds at Christiansø in the east compared to Hov Røn in the west. All birds in the three colonies had Hg concentrations in the range of ≤1.0 μg/g ww, which indicates that the risk of effects on reproduction is in the no to low risk category for wild birds. Among the biochemical measures, glucose, fructosamine, amylase, albumin and protein decreased significantly from early to late incubation at Hov Røn and Christiansø, reflecting long-term fastening as supported by the decline in body mass. Untargeted metabolomics performed on Christiansø eiders revealed presence of 8,433 plasma metabolites. Of these, 3,179 metabolites changed significantly (log2-fold change ≥1, p ≤ 0.05) from the early to late incubation. For example, smaller peptides and vitamin B2 (riboflavin) were significantly down-regulated while 11-deoxycorticosterone and palmitoylcarnitine were significantly upregulated. These results show that cumulative stress including fasting during incubation affect the eiders' biochemical profile and energy metabolism and that this may be most pronounced for the Christiansø colony in the Baltic proper. This amplify the events of temperature increases and food web changes caused by global warming that eventually accelerate the loss in body weight. Future studies should examine the relationship between body condition, temperature and reproductive outcomes and include mapping of food web contaminant, energy and nutrient content to better understand, manage and conserve the populations.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links