Displaying publications 41 - 60 of 77 in total

Abstract:
Sort:
  1. Liang T, Qu Q, Chang Y, Gopinath SCB, Liu XT
    Biotechnol Appl Biochem, 2019 Nov;66(6):939-944.
    PMID: 31468573 DOI: 10.1002/bab.1808
    Ovarian cancer starts in the ovaries in its earlier stages and then spreads to the pelvis, uterus, and abdominal region. The success of an ovarian cancer treatment depends on the stage of the cancer and the diagnostic system. Squamous cell carcinoma antigen (SCC-Ag) is one of the most efficient cancer biomarkers, and elevated levels of SCC-Ag in ovarian cancer cells have been used to identify ovarian cancer. Carbon is a potential material for biosensing applications due to its thermal, electrical, and physical properties. Multiwalled carbon nanotubes (MWCNTs) are carbon-based materials that can be used here to detect SCC-Ag. Anti-SCC-Ag antibody was immobilized on the amine-modified MWCNT dielectric sensing surface to detect SCC-Ag. The uniformity of the surface structure was measured with a 3D nanoprofiler, and the results confirmed the detection of SCC-Ag at ∼80 pM. The specific detection of SCC-Ag was confirmed with two control proteins (factor IX and human serum albumin), and the system did not show biofouling. This experimental set-up with MWCNTs a dielectric sensing surface can lead to the detection of ovarian cancer in its initial stages.
  2. Mohd Razaif-Mazinah MR, Mohamad Annuar MS, Sharifuddin Y
    Biotechnol Appl Biochem, 2016 Jan-Feb;63(1):92-100.
    PMID: 25643814 DOI: 10.1002/bab.1354
    The biosynthesis of medium-chain-length poly-3-hydroxyalkanoates by Pseudomonas putida Bet001 cultivated on mixed carbon sources was investigated. The mixed carbon sources consisted of heptanoic acid (HA) and oleic acid (OA). A relatively low PHA content at 1.2% (w/w) and 11.4% (w/w) was obtained when HA or OA was used as the sole carbon source. When these fatty acids were supplied as a mixture, PHA content increased threefold. Interestingly, the mixture-derived PHA composed of both odd and even monomer units, namely. 3-hydroxyheptanoate, 3-hydroxyoctanoate, 3-hydroxydecanoate, and 3-hydroxydodecanoate and no unsaturated monomer was detected. It is hypothesized that the even-numbered monomers were derived primarily from OA, whereas the odd-numbered monomer was derived from HA. This also points out to an efficient and yet distinct fatty acids metabolism that fed the PHA biosynthesis machinery of this particular microorganism. PHA obtained was elastomeric because melting temperature (Tm ) and crystallinity were absent. It showed good thermal stability with degradation temperature (Td ) ranging from 275.96 to 283.05 °C.
  3. Mydin RBSMN, Mahboob A, Sreekantan S, Saharudin KA, Qazem EQ, Hazan R, et al.
    Biotechnol Appl Biochem, 2023 Jun;70(3):1072-1084.
    PMID: 36567620 DOI: 10.1002/bab.2421
    In biomedical implant technology, nanosurface such as titania nanotube arrays (TNA) could provide better cellular adaptation, especially for long-term tissue acceptance response. Mechanotransduction activities of TNA nanosurface could involve the cytoskeleton remodeling mechanism. However, there is no clear insight into TNA mechano-cytoskeleton remodeling activities, especially computational approaches. Epithelial cells have played critical interface between biomedical implant surface and tissue acceptance, particularly for long-term interaction. Therefore, this study investigates genomic responses that are responsible for cell-TNA mechano-stimulus using epithelial cells model. Findings suggested that cell-TNA interaction may improve structural and extracellular matrix (ECM) support on the cells as an adaptive response toward the nanosurface topography. More specifically, the surface topography of the TNA might improve the cell polarity and adhesion properties via the interaction of the plasma membrane and intracellular matrix responses. TNA nanosurface might engross the cytoskeleton remodeling activities for multidirectional cell movement and cellular protrusions on TNA nanosurface. These observations are supported by the molecular docking profiles that determine proteins' in silico binding mechanism on TNA. This active cell-surface revamping would allow cells to adapt to develop a protective barrier toward TNA nanosurface, thus enhancing biocompatibility properties distinctly for long-term interaction. The findings from this study will be beneficial toward nano-molecular knowledge of designing functional nanosurface technology for advanced medical implant applications.
  4. Ng WK, Lim TS, Lai NS
    Biotechnol Appl Biochem, 2018 Jul;65(4):547-553.
    PMID: 29280199 DOI: 10.1002/bab.1636
    A critical challenge in producing an antibody-based assay with the highest reproducibility and sensitivity is the strategy to immobilize antibodies to solid phase. To date, numerous methods of antibody immobilization were reported but each was subjected to its advantages and limitations. The current study proposes a new potential antibody binding protein, the human neonatal fragment crystallizable (Fc) receptor. This protein has shown its high affinity to the Fc of antibody either in vivo or in vitro. Human neonatal Fc receptor is a heterodimer constructed by p51 α-heavy chain and β2-microglobulin light chain; however, the binding sites toward the antibody are located in the p51 α-heavy chain. Hence, vector cloning and recombinant protein expression were carried out to express the p51 α-heavy chain of the human neonatal Fc receptor (hFcRn-α). The recombinant protein expressed, hFcRn-α, was adopted to pin rabbit IgG against hepatitis B virus surface antigen to a solid phase. A sandwich enzyme-linked immunosorbent assay was further developed to evaluate the efficiency of hFcRn-α-directed immobilization in antigen detection. The result was compared with the conventional physical adsorption method. The findings demonstrated that human neonatal Fc receptor was efficient in pinning antibodies and generating higher signals compared with the physical adsorption of antibody.
  5. Nuge T, Liu X, Tshai KY, Lim SS, Nordin N, Hoque ME, et al.
    PMID: 33826152 DOI: 10.1002/bab.2162
    Despite a lot of intensive research on cells-scaffolds interaction, focused are mainly on the capacity of construct scaffolds to regulate cell mobility, migration and cytotoxicity. The effect of the scaffold's topographical and material properties on the expression of biologically active compounds from stem cells is not well understood. In this study, the influence of cellulose acetate (CA) on the electrospinnability of gelatin and the roles of gelatin-cellulose acetate (Ge-CA) on modulating the release of biologically active compounds from amniotic fluid stem cells (AFSCs) is emphasized. It was found that the presence of a small amount of CA could provide a better microenvironment that mimics AFSCs' niche. However, a large amount of CA exhibited no significant effect on AFSCs migration and infiltration. Further study on the effect of surface topography and mechanical properties on AFSCs showed that the tailored microenvironment provided by the Ge-CA scaffolds had transduced physical cues to biomolecules released into the culture media. It was found that the AFSCs seeded on electrospun scaffolds with less CA proportions has profound effects on the secretion of metabolic compounds compared to those with higher CA contained and gelatin coating. The enhanced secretion of biologically active molecules by the AFSCs on the electrospun scaffolds was proven by the accelerated wound closure on the injured human dermal fibroblast (HDF) model. The rapid HDF cell migration could be anticipated due to a higher level of paracrine factors in AFSCs media. Our study demonstrates that the fibrous topography and mechanical properties of the scaffold is a key material property that modulates the high expression of biologically active compounds from the AFSCs. The discovery elucidates a new aspect of material functions and scaffolds material-AFSCs interaction for regulating biomolecules release to promote tissue regeneration/repair. To the best of our knowledge, this is the first report describing the scaffolds material-AFSCs interaction and the efficacy of scratch assays on quantifying the cell migration in response to the AFSCs metabolic products. This article is protected by copyright. All rights reserved.
  6. Omar N, Hamidon NH, Yunus MH, Noordin R, Choong YS, Lim TS
    Biotechnol Appl Biochem, 2018 May;65(3):346-354.
    PMID: 28833498 DOI: 10.1002/bab.1591
    Phage display has been applied successfully as a tool for the generation of monoclonal antibodies (mAbs). Naive antibody libraries are unique as they are able to overcome several limitations associated with conventional mAb generation methods like the hybridoma technology. Here, we performed an in vitro selection and generation of Fab antibodies against Brugia malayi SXP protein (BmSXP), a recombinant antigen for the detection of lymphatic filariasis. We developed a naïve multi ethnic Fab antibody library with an estimated diversity of 2.99 × 109 . The antibody library was used to screen for mAbs against BmSXP recombinant antigen. Soluble monoclonal Fab antibodies against BmSXP were successfully isolated from the naïve library. The Fab antibodies obtained were expressed and analyzed to show its binding capability. The diversity obtained from a pool of donors from various ethnic groups allowed for a diverse antibody library to be generated. The mAbs obtained were also functional in soluble form, which makes it useful for further downstream applications. We believe that the Fab mAbs are valuable for further studies and could also contribute to improvements in the diagnosis of filariasis.
  7. Othman MI, Majid MI, Singh M, Subathra S, Seng L, Gam LH
    Biotechnol Appl Biochem, 2009 Mar;52(Pt 3):209-19.
    PMID: 18564057 DOI: 10.1042/BA20070271
    Breast cancer is the leading cause of cancer-related mortality and morbidity among women worldwide and IDC (infiltrating ductal carcinoma) is the most common type of invasive breast cancer. The changes in the biological behaviour of cancer tissue can be predicted by measuring the differential protein expression of normal and cancerous tissues. Using a combination of SDS/PAGE and LC (liquid chromatography)-MS/MS (tandem MS), we identified 82 common and differentially expressed proteins from normal and cancerous breast tissues in 20 Malaysian Chinese patients with IDC. These proteins are extracted from the normal and cancerous tissue of patients and therefore represent the actual proteins involved in cancer development. Proteins identified possibly have significant roles in the development of breast cancer in Malaysian Chinese patients in view of their consistent expression in most of the patients, although some of the proteins had not been detected in earlier studies that were mostly carried out in Western countries. This observation suggests that molecular mechanisms leading to breast cancer development in this region may not be identical with those leading to IDC in Western regions.
  8. Pandian K, Kalayarasi J, Gopinath SCB
    Biotechnol Appl Biochem, 2022 Dec;69(6):2766-2779.
    PMID: 35287249 DOI: 10.1002/bab.2321
    This study presents a novel sulfur-doped graphitic carbon nitride (S@g-C3 N4 ) with a wider potential range as electrocatalyst for electrochemical sensor application. The S@g-C3 N4 nanosheets were successfully prepared with a ball milling method by mixing appropriate molar concentration required precursors. The as-synthesized heteroatom-doped graphitic carbon nitride is characterized by spectroscopic techniques including PL, DRS-UV, FT-IR, and Brunauer-Emmett-Teller equation. The morphological features were studied by FE-SEM and HR-TEM analysis. Chit-S@g-C3 N4 -modified glassy carbon electrode (GCE) was employed for the electrochemical detection of omeprazole (OMZ) use in drug formulations. We have noted an oxidation peak current response at a potential of +0.8 V versus Ag/AgCl in PBS medium (0.1 M, pH 7.0). Differential pulse voltammetry amperometry experimental method can be used to measure the concentration of OMZ for quantitative studies in known samples. Under the optimized experimental condition, the calibration plot was constructed by plotting the peak currents versus OMZ in the linear ranges from 6.0 × 10-7 to 26 × 10-5  M. The linear regression equation is estimated to be Ip (μA) = 0.9518 (C/μM) + 0.3340 with a good correlation coefficient of 0.9996. The lower determination limit was found to be 20 nM and the current sensitivity was calculated (31.722 μA μM-1  cm-2 ). The developed sensor was utilized successfully to determine the OMZ concentration in drug formulations and biological fluids. These results revealed that the Chit-S@g-C3 N4 -modified GCE showed excellent electroanalytical performance for the detection of OMZ at a low LOD, wider linear range, high sensitivity, good reproducibility, long-term storage stability, and selectivity with an acceptable relative standard deviation value.
  9. Peng S, Wang Q, Xiong G, Gopinath SCB, Lei G
    PMID: 34076915 DOI: 10.1002/bab.2208
    Gestational diabetes and jaundice are the correlated diseases predominantly found in mother and newborn child. Jaundice is a neonatal complication with an increased risk when mother has gestational diabetes. Mothers with diabetes at an early stage of gestational age are at higher risk for hyperbilirubinemia (jaundice) and hypoglycemia. So, it is mandatory to monitor the condition of diabetes and jaundice during the pregnancy period for a healthy child and safest delivery. On the other hand, nanotechnology has displayed a rapid advancement that can be implemented to overcome these issues. The development of high-performance diagnosis using appropriate biomarkers provides their efficacy in the detection gestational diabetes and jaundice. This review covers the aspects from a fast-developing field to generate nanosensors in the nanosized dimensions for the applications to overcome these complications by coupling diagnostics with biomarkers. Further, the serum-based biomarkers have been discussed for these inborn complications and also the diagnosis with the current trend.
  10. Qin D, Gong Q, Li X, Gao Y, Gopinath SCB, Chen Y, et al.
    Biotechnol Appl Biochem, 2023 Apr;70(2):553-559.
    PMID: 35725894 DOI: 10.1002/bab.2377
    Mycoplasma pneumoniae is a highly infectious bacterium and the major cause of pneumonia especially in school-going children. Mycoplasma pneumoniae affects the respiratory tract, and 25% of patients experience health-related problems. It is important to have a suitable method to detect M. pneumoniae, and gold nanoparticle (GNP)-based colorimetric biosensing was used in this study to identify the specific target DNA for M. pneumoniae. The color of GNPs changes due to negatively charged GNPs in the presence of positively charged monovalent (Na+ ) ions from NaCl. This condition is reversed in the presence of a single-stranded oligonucleotide, as it attracts GNPs but not in the presence of double-stranded DNA. Single standard capture DNA was mixed with optimal target DNA that cannot be adsorbed by GNPs; under this condition, GNPs are not stabilized and aggregate at high ionic strength (from 100 mM). Without capture DNA, the GNPs that were stabilized by capture DNA (from 1 μM) became more stable under high ionic conditions and retaining their red color. The GNPs turned blue in the presence of target DNA at concentrations of 1 pM, and the GNPs retained a red color when there was no target in the solution. This method is useful for the simple, easy, and accurate identification of M. pneumoniae target DNA at higher discrimination and without involving sophisticated equipment, and this method provides a diagnostic for M. pneumoniae.
  11. Radhakrishnan DP, Kanakaraja A, Krishnan N, Sakthivelu M, Gopinath SCB, Pachaiappan R
    PMID: 38311972 DOI: 10.1002/bab.2563
    Parmotrema perlatum, a lichen belonging to the family Parmeliaceae, is well known for its culinary benefits and aroma used as a condiment in Indian homes is also known as the "black stone flower" or "kalpasi" in India. This research intends to analyze the antioxidant power of the crude extracts using four pH-based buffers solubilized proteins/peptides and RP-HPLC fractions of P. perlatum obtained by purification. The proteins that were extracted from the four different buffers were examined using LC-MS/MS-based peptide mass fingerprinting. When compared to the other buffers, the 0.1 M of Tris-HCl buffer pH 8.0 solubilized proteins/peptides had the strongest antioxidant capacity. The sequential purification of the peptide was carried out by using a 3-kDa cut-off membrane filter and semipreparative RP-HPLC. Additionally, the purified fractions of the peptide's antioxidant activity were assessed, and effects were compared with those of the crude and 3 kDa cut--off membrane filtrates. The peptide fractions were sequenced by LC-MS/MS, which reveals that fraction 2 from RP-HPLC with the sequence LSWFMVVAP has shown the highest antioxidant potential in comparison with other fractions which can serve as the potential natural antioxidant drug. Further, fraction 2 also showed antibacterial activity against the selected microorganisms.
  12. Razaif-Mazinah MRM, Anis SNS, Harun HI, Rashid KA, Annuar MSM
    Biotechnol Appl Biochem, 2017 Mar;64(2):259-269.
    PMID: 26800648 DOI: 10.1002/bab.1482
    Pseudomonas putida Bet001 and Delftia tsuruhatensis Bet002, isolated from palm oil mill effluent, accumulated poly(3-hydroxyalkanoates) (PHAs) when grown on aliphatic fatty acids, sugars, and glycerol. The substrates were supplied at 20:1 C/N mole ratio. Among C-even n-alkanoic acids, myristic acid gave the highest PHA content 26 and 28 wt% in P. putida and D. tsuruhatensis, respectively. Among C-odd n-alkanoic acids, undecanoic gave the highest PHA content at 40 wt% in P. putida and 46 wt% in D. tsuruhatensis on pentadecanoic acid. Sugar and glycerol gave <10 wt% of PHA content for both bacteria. Interestingly, D. tsuruhatensis accumulated both short- and medium-chain length PHA when supplied with n-alkanoic acids ranging from octanoic to lauric, sucrose, and glycerol with 3-hydroxybutyrate as the major monomer unit. In P. putida, the major hydroxyalkanoates unit was 3-hydroxyoctanoate and 3-hydroxydecanoate when grown on C-even acids. Conversely, 3-hydroxyheptanoate, 3-hydrxoynonanoate, and 3-hydroxyundecanoate were accumulated with C-odd acids. Weight-averaged molecular weight (Mw ) was in the range of 53-81 kDa and 107-415 kDa for P. putida and D. tsuruhatensis, respectively. Calorimetric analyses indicated that both bacteria synthesized semicrystalline polymer with good thermal stability with degradation temperature (Td ) ranging from 178 to 282 °C.
  13. Saat MN, Mohamad Annuar MS
    Biotechnol Appl Biochem, 2020 May;67(3):354-365.
    PMID: 31746015 DOI: 10.1002/bab.1859
    One-pot synthesis of sugar-functionalized oligomeric caprolactone was carried out by lipase-catalyzed esterification of ε-caprolactone (ECL) with methyl-d-glucopyranoside (MGP) followed by the elongation of functionalized oligomer chain. Functionalization was performed in a custom-fabricated glass reactor equipped with Rushton turbine impeller and controlled temperature at 60 °C using tert-butanol as reaction medium. The overall reaction steps include MGP esterification of ECL monomer and its subsequent elongation by free 6-hydroxyhexanoate monomer units. A ping-pong bi-bi mechanism without ternary complex was proposed for esterification of ECL and MGP with apparent values of kinetic constant, namely maximal velocity (Vmax ), Michaelis constant for MGP (KmMGP ), and Michaelis constant for ECL (KmECL ) at 3.848 × 10-3  M H-1 , 8.189 × 10-2  M, and 6.050 M, respectively. Chain propagation step of MGP-functionalized ECL oligomer exhibits the properties of living polymerization mechanism. Linear relationship between conversion (%) and number average molecular weight, Mn (g mol-1 ), of functionalized oligomer was observed. Synthesized functionalized oligomer showed narrow range of molecular weight from 1,400 to 1,600 g mol-1 with more than 90% conversion achieved. Structural analysis confirmed the presence of covalent bond between the hydroxyl group in MGP with carboxyl end group of ECL oligomer.
  14. Shori AB, Ming KS, Baba AS
    Biotechnol Appl Biochem, 2021 Apr;68(2):221-229.
    PMID: 32249982 DOI: 10.1002/bab.1914
    Plain and Lycium barbarum yogurt were made in the presence and absence of fish collagen. Yogurt samples were analyzed for acidification, milk protein proteolysis, angiotensin I-converting enzyme (ACE) inhibitory activity, and sensory evaluation during refrigerated storage for up to 21 days. The o-phthaldialdehyde peptides amount of L. barbarum yogurt both in the presence and absence of fish collagen were significantly increased during 14 days of storage. SDS-PAGE showed improvement in whey proteins degradation of L. barbarum yogurt with/without fish collagen after 3 weeks of storage. L. barbarum yogurt in absence of fish collagen was acting as a great ACE inhibitor reached up to 85% on day 7 of storage. The incorporation of L. barbarum and/or fish collagen affected to a small extent the overall sensory characteristics of yogurt. Yogurt supplemented with L. barbarum and/or fish collagen may lead to the improvement in the production and formulation of yogurt differing in their anti-ACE activity.
  15. Singh Y, Samuel VP, Dahiya S, Gupta G, Gillhotra R, Mishra A, et al.
    Biotechnol Appl Biochem, 2019 Sep;66(5):715-719.
    PMID: 31314127 DOI: 10.1002/bab.1799
    Homocysteine [HSCH2 CH2 CH(NH2 )COOH] (Hcy) is a sulfur-containing amino acid of 135.18 Da of molecular weight, generated during conversion of methionine to cysteine. If there is a higher accumulation of Hcy in the blood, that is usually above 15 µmol/L, it leads to a condition referred to as hyperhomocysteinemia. A meta-analysis of observational study suggested an elevated concentration of Hcy in blood, which is termed as the risk factors leading to ischemic heart disease and stroke. Further experimental studies stated that Hcy can lead to an increase in the proliferation of vascular smooth muscle cells and functional impairment of endothelial cells. The analyses confirmed some of the predictors for Hcy presence, such as serum uric acid (UA), systolic blood pressure, and hematocrit. However, angiotensin-converting enzyme inhibitors angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) alone are inadequate for controlling UA and creatinine level, although the addition of folic acid may be beneficial in hypertensive patients who are known to have a high prevalence of elevated Hcy. We hypothesized that combination therapy with an ARB (olmesartan) and folic acid is a promising treatment for lowering the UA and creatinine level in hyperhomocysteinemia-associated hypertension.
  16. Sirajudeen AAO, Annuar MSM, Subramaniam R
    Biotechnol Appl Biochem, 2021 Apr;68(2):307-318.
    PMID: 32314420 DOI: 10.1002/bab.1928
    A microbial fuel cell is a sustainable and environmental-friendly device that combines electricity generation and wastewater treatment through metabolic activities of microorganisms. However, low power output from inadequate electron transfer to the anode electrode hampers its practical implementation. Nanocomposites of oxidized carbon nanotubes and medium-chain-length polyhydroxyalkanoates (mcl-PHA) grafted with methyl acrylate monomers enhance the electrochemical function of electrodes in microbial fuel cell. Extensive polymerization of methyl acrylate monomers within mcl-PHA matrix, and homogenous dispersion of carbon nanotubes within the graft matrix are responsible for the enhancement. Modified electrodes exhibit high conductivities, better redox peak and reduction of cell internal resistance up to 76%. A stable voltage output at almost 700 mV running for 225 H generates maximum power and current density of 351 mW/m2 and 765 mA/m2 , respectively. Superior biofilm growth on modified surface is responsible for improved electron transfer to the anode hence stable and elevated power output generation.
  17. Song F, Yang Y, Gopinath SCB
    Biotechnol Appl Biochem, 2021 Jun;68(3):683-689.
    PMID: 32628799 DOI: 10.1002/bab.1980
    A high-performance interdigitated electrode (IDE) biosensing surface was reported here by utilizing self-assembled silica nanoparticle (SiNP). The modified surface was used to evaluate the complementation of hairpin forming region from Mitoxantrone resistance gene 7 (MXR7; liver cancer-related short gene). The conjugated SiNPs on 3-aminopropyl triethoxysilane functionalization were captured with probe sequence on IDE biosensing surface. The physical and chemically modified surface was used to quantify MXR7 and an increment in the current response upon complementation was noticed. Limit of target DNA detection was calculated (1-10 fM) and this label-free detection is at the comparable level to the fluorescent-based sensing. A linear regression was calculated [y = 0.243x - 0.0773; R² = 0.9336] and the sensitivity was 1 fM on the linear range of 1 fM to 10 pM. With the strong attachment of capture DNA on IDE through SiNP, the surface clearly discriminates the specificity (complementary) versus nonspecificity (complete-, single-, and triple-mismatched sequences). This detection strategy helps to determine liver cancer progression and the similar strategy can be followed for other gene sequence complementation.
  18. Sun H, Bao X, Yao X, Gopinath SCB, Min Y
    PMID: 34278604 DOI: 10.1002/bab.2223
    Luteinizing hormone (LH)/Lutropin is an interstitial cell stimulating hormone playing a predominant role in the reproductive system, and highly correlated with the infertility treatment in both men and women. This research was concentrated to quantify LH level by using interdigitated electrode sensor. To improve the electric current flow, sensing electrode was modified with graphene oxide (GO) and the aptamer probe was attached on GO through biotin-streptavidin linker. Current responses were measured with aptamer-LH interaction at the target concentrations between 7.5 nM and 1 μM and the detection limit of LH was calculated as 60 nM with the determination co-efficient (R2 ) value, 0.9229 [y = 1.296x - 2.8435] on a linear range from 30 nM until 1 μM. Further, biofouling effect on sensing electrode surface was analysed with complementary aptamer sequence, control proteins (Albumin, and globulin). The above GO-aptamer modified interdigitated electrode sensor helps to quantify LH level and diagnose gynaecological endocrinology related complications. This article is protected by copyright. All rights reserved.
  19. Talei D, Valdiani A, Puad MA
    Biotechnol Appl Biochem, 2013 Sep-Oct;60(5):521-6.
    PMID: 23725097 DOI: 10.1002/bab.1126
    Proteomic analysis of plants relies on high yields of pure protein. In plants, protein extraction and purification present a great challenge due to accumulation of a large amount of interfering substances, including polysaccharides, polyphenols, and secondary metabolites. Therefore, it is necessary to modify the extraction protocols. A study was conducted to compare four protein extraction and precipitation methods for proteomic analysis. The results showed significant differences in protein content among the four methods. The chloroform-trichloroacetic acid-acetone method using 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer provided the best results in terms of protein content, pellets, spot resolution, and intensity of unique spots detected. An overall of 83 qualitative or quantitative significant differential spots were found among the four methods. Based on the 2-DE gel map, the method is expected to benefit the development of high-level proteomic and biochemical studies of Andrographis paniculata, which may also be applied to other recalcitrant medicinal plant tissues.
  20. Tam YJ, Zeenathul NA, Rezaei MA, Mustafa NH, Azmi MLM, Bahaman AR, et al.
    Biotechnol Appl Biochem, 2017 Sep;64(5):735-744.
    PMID: 27506960 DOI: 10.1002/bab.1528
    Limit of detection (LOD), limit of quantification, and the dynamic range of detection of hepatitis B surface antigen antibody (anti-HBs) using a surface plasmon resonance (SPR) chip-based approach with Pichia pastoris-derived recombinant hepatitis B surface antigen (HBsAg) as recognition element were established through the scouting for optimal conditions for the improvement of immobilization efficiency and in the use of optimal regeneration buffer. Recombinant HBsAg was immobilized onto the sensor surface of a CM5 chip at a concentration of 150 mg/L in sodium acetate buffer at pH 4 with added 0.6% Triton X-100. A regeneration solution of 20 mM HCl was optimally found to effectively unbind analytes from the ligand, thus allowing for multiple screening cycles. A dynamic range of detection of ∼0.00098-0.25 mg/L was obtained, and a sevenfold higher LOD, as well as a twofold increase in coefficient of variance of the replicated results, was shown as compared with enzyme-linked immunosorbent assay (ELISA). Evaluation of the assay for specificity showed no cross-reactivity with other antibodies tested. The ability of SPR chip-based assay and ELISA to detect anti-HBs in human serum was comparable, indicating that the SPR chip-based assay with its multiple screening capacity has greater advantage over ELISA.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links