Displaying publications 41 - 60 of 73 in total

Abstract:
Sort:
  1. Jantan I, Norahmad NA, Yuandani, Haque MA, Mohamed-Hussein ZA, Mohd Abd Razak MR, et al.
    PMID: 38619217 DOI: 10.1080/10408398.2024.2341266
    Inflammatory cascades of the dysregulated inflammatory pathways in COVID-19 can cause excessive production of pro-inflammatory cytokines and chemokines leading to cytokine storm syndrome (CSS). The molecular cascades involved in the pathways may be targeted for discovery of new anti-inflammatory agents. Many plant extracts have been used clinically in the management of COVID-19, however, their immunosuppressive activities were mainly investigated based on in silico activity. Dietary flavonoids of the extracts such as quercetin, luteolin, kaempferol, naringenin, isorhamnetin, baicalein, wogonin, and rutin were commonly identified as responsible for their inhibitory effects. The present review critically analyzes the anti-inflammatory effects and mechanisms of phytochemicals, including dietary compounds against cytokine storm (CS) and hyperinflammation via inhibition of the altered inflammatory pathways triggered by SARS-CoV-2, published since the emergence of COVID-19 in December 2019. Only a few phytochemicals, mainly dietary compounds such as nanocurcumin, melatonin, quercetin, 6-shagoal, kaempferol, resveratrol, andrographolide, and colchicine have been investigated either in in silico or preliminary clinical studies to evaluate their anti-inflammatory effects against COVID-19. Sufficient pre-clinical studies on safety and efficacy of anti-inflammatory effects of the phytochemicals must be performed prior to proper clinical studies to develop them into therapeutic adjuvants in the prevention and treatmemt of COVID-19 symptoms.
  2. Jamaluddin N, Stuckey DC, Ariff AB, Faizal Wong FW
    Crit Rev Food Sci Nutr, 2018;58(14):2453-2465.
    PMID: 28609113 DOI: 10.1080/10408398.2017.1328658
    Bacteriocin is a proteinaceous biomolecule produced by bacteria (both Gram-positive and Gram-negative) that exhibits antimicrobial activity against closely related species, and food-borne pathogens. It has recently gained importance and attracted the attention of several researchers looking to produce it from various substrates and bacterial strains. This ushers in a new era of food preservation where the use of bacteriocin in food products will be an alternative to chemical preservatives, and heat treatment which are understood to cause unwanted side effects, and reduce sensory and nutritional quality. However, this new market depends on the success of novel downstream separation schemes from various types of crude feedstocks which are both effective and economic. This review focuses on the downstream separation of bacteriocin from various sources using both conventional and novel techniques. Finally, recommendations for future interesting areas of research that need to be pursued are highlighted.
  3. Jafarzadeh S, Jafari SM
    Crit Rev Food Sci Nutr, 2021;61(16):2640-2658.
    PMID: 32631073 DOI: 10.1080/10408398.2020.1783200
    New food packaging materials provide an attractive option for the advancement of nanomaterials. The poor thermal, mechanical, chemical, and physical properties of biopolymers and their inherent permeability to gases and vapor have increased this interest. Polymeric materials (matrix) in modern technologies require a filler, which can react/interact with the available matrix to provide a new formulation with improved packaging properties including oxygen permeability, moisture permeability, crystalline structure, barrier properties, morphology, thermal stability, optical properties, anti-microbial characteristics, and mechanical properties. The performance of nanocomposite films and packaging is dependent on the size of the nanofillers used and the uniformity of the nanoparticles (NPs) distribution and dispersion in the matrix. Advancement in nanocomposite technologies is expected to grow with the advent of sustainable, low price, environmentally friendly materials with an enhanced performance. The current review addresses advances in the biopolymeric nanocomposites as alternatives to petroleum plastics in the food packaging industry. It also provides a brief description of biopolymer nanocomposite films and gives general information about different metal NPs with an emphasis on their influence on the emerging characteristics of biodegradable films. The results of recent reports provide a better understanding of the influence of metal NPs in food packaging.
  4. Jafarzadeh S, Hadidi M, Forough M, Nafchi AM, Mousavi Khaneghah A
    Crit Rev Food Sci Nutr, 2023;63(23):6393-6411.
    PMID: 35089844 DOI: 10.1080/10408398.2022.2031099
    Conventionally used petrochemical-based plastics are poorly degradable and cause severe environmental pollution. Alternatively, biopolymers (e.g., polysaccharides, proteins, lipids, and their blends) are biodegradable and environment-friendly, and thus their use in packaging technologies has been on the rise. Spoilage of food by mycotoxigenic fungi poses a severe threat to human and animal health. Hence, because of the adverse effects of synthetic preservatives, active packaging as an effective technique for controlling and decontaminating fungi and related mycotoxins has attracted considerable interest. The current review aims to provide an overview of the prevention of fungi and mycotoxins through active packaging. The impact of different additives on the antifungal and anti-mycotoxigenic functionality of packaging incorporating active films/coatings is also investigated. In addition, active packaging applications to control and decontaminate common fungi and mycotoxins in bakery products, cereal grains, fruits, nuts, and dairy products are also introduced. The results of recent studies have confirmed that biopolymer films and coatings incorporating antimicrobial agents provide great potential for controlling common fungi and mycotoxins and enhancing food quality and safety.
  5. Hossain MAM, Uddin SMK, Sultana S, Wahab YA, Sagadevan S, Johan MR, et al.
    Crit Rev Food Sci Nutr, 2022;62(2):285-310.
    PMID: 32914638 DOI: 10.1080/10408398.2020.1814691
    Meat and meat products are widely consumed worldwide as a source of high-quality proteins, essential amino acids, vitamins, and necessary minerals. The acceptability of Halal and Kosher meat products relies not only on the species origin but also on the manner of slaughtering of animals. Both Islam and Judaism have their own dietary laws in their holy books regarding acceptance and forbiddance of dietary items particularly meat and meat products. They also include many strictures to follow for ritual cleanliness of foods. Since the authenticity of Halal and Kosher food created increased concerns among consumers, the integrity of Halal and Kosher meat and meat products must be assured so that consumers can be accomplished with the originality of products. There is an increasing demand for reliable and sensitive techniques for the authentication of various Halal and Kosher meat products. This up-to-date review intends to provide an updated and extensive overview critically on the present situation, progress, and challenges of analytical techniques to authenticate animal species in meat items. It also addresses slaughtering procedure with brief discussion on Halal and Kosher laws with a view to creating consumer awareness against fraudulent practices. The available methods are schematically presented, and their salient features are comparatively elucidated in tables. Potential future technologies are predicted, and probable challenges are summarized. Overall, the present review article possesses substantial merits to be served as a reference guide in the field of academia and industry for the preparation/processing and identification of Halal and Kosher meat and meat products as well as may act as a platform to help improve existing authentication methods.
  6. Hospet R, Thangadurai D, Cruz-Martins N, Sangeetha J, Anu Appaiah KA, Chowdhury ZZ, et al.
    Crit Rev Food Sci Nutr, 2023;63(17):2960-2969.
    PMID: 34592865 DOI: 10.1080/10408398.2021.1983763
    Strains' improvement technology plays an essential role in enhancing the quality of industrial strains. Several traditional methods and modern techniques have been used to further improve strain engineering programs. The advances stated in strain engineering and the increasing demand for microbial metabolites leads to the invention of the genome shuffling technique, which ensures a specific phenotype improvement through inducing mutation and recursive protoplast fusion. In such technique, the selection of multi-parental strains with distinct phenotypic traits is crucial. In addition, as this evolutionary strain improvement technique involves combinative approaches, it does not require any gene sequence data for genome alteration and, therefore, strains developed by this elite technique will not be considered as genetically modified organisms. In this review, the different stages involved in the genome shuffling technique and its wide applications in various phenotype improvements will be addressed. Taken together, data discussed here highlight that the use of genome shuffling for strain improvement will be a plus for solving complex phenotypic traits and in promoting the rapid development of other industrially important strains.
  7. Hj Latip DN, Samsudin H, Utra U, Alias AK
    Crit Rev Food Sci Nutr, 2021;61(17):2841-2862.
    PMID: 32648775 DOI: 10.1080/10408398.2020.1789064
    Starch is a complex carbohydrate formed by the repeating units of glucose structure connected by the alpha-glycosidic linkages. Starch is classified according to their derivatives such as cereals, legumes, tubers, palms, fruits, and stems. For decades, native starch has been widely utilized in various applications such as a thickener, stabilizer, binder, and coating agent. However, starches need to be modified to enhance their properties and to make them more functional in a wide range of applications. Porous starch is a modified starch product which has attracted interest of late. It consists of abundant pores that are distributed on the granule surface without compromising the integrity of its granular structure. Porous starch can be produced either by enzymatic, chemical, and physical methods or a combination thereof. The type of starch and selection of the modification method highly influence the formation of pore structure. By carefully choosing a suitable starch and modification method, the desired morphology of porous starch can be produced and applied accordingly for its intended application. Innovations and technologies related to starch modification methods have evolved over the years in terms of the structure, properties and modification effects of different starch varieties. Therefore, this article reviews recent modification methods in developing porous starch from various origins.
  8. Hajeb P, Jinap S
    Crit Rev Food Sci Nutr, 2015;55(6):778-91.
    PMID: 24915349 DOI: 10.1080/10408398.2012.678422
    Umami, the fifth basic taste, is the inimitable taste of Asian foods. Several traditional and locally prepared foods and condiments of Asia are rich in umami. In this part of world, umami is found in fermented animal-based products such as fermented and dried seafood, and plant-based products from beans and grains, dry and fresh mushrooms, and tea. In Southeast Asia, the most preferred seasonings containing umami are fish and seafood sauces, and also soybean sauces. In the East Asian region, soybean sauces are the main source of umami substance in the routine cooking. In Japan, the material used to obtain umami in dashi, the stock added to almost every Japanese soups and boiled dishes, is konbu or dried bonito. This review introduces foods and seasonings containing naturally high amount of umami substances of both animal and plant sources from different countries in Asia.
  9. Guo J, Zhang M, Law CL, Luo Z
    PMID: 37480290 DOI: 10.1080/10408398.2023.2238826
    Prepared dishes are popular convenience foods that meet the needs of consumers who pursue delicious tastes while saving time and effort. As a new technology, food 3D printing (also known as food additive manufacturing technology) has great advantage in the production of personalized food. Applying food 3D printing technology in the production of prepared dishes provides the solution to microbial contamination, poor nutritional quality and product standardization. This review summarizes the problems faced by the prepared dishes industry in traditional food processing, and introduces the characteristics of prepared dishes and 3D printing technology. Food additives are suitable for 3D prepared dishes and novel 3D printing technologies are also included in this review. In addition, the challenges and possible solutions of the application of food 3D printing technology in the field of prepared dishes are summarized and explored. Food additives with advantages in heat stability, low temperature protection and bacteriostasis help to accelerate the application of 3D printing in prepared dishes industry. The combination of 3D printing technology with heat-assisted sources (microwave, laser) and non-heat-assisted sources (electrolysis, ultrasound) provides the possibility for the development of customized prepared dishes in the future, and also promotes more 3D food printing technologies for commercial use. It is noteworthy that these technologies are still at research stage, and there are challenges for the formulation design, the stability of printed ink storage, as well as implementation of customized nutrition for the elderly and children.
  10. Garavand F, Cacciotti I, Vahedikia N, Rehman A, Tarhan Ö, Akbari-Alavijeh S, et al.
    Crit Rev Food Sci Nutr, 2022;62(5):1383-1416.
    PMID: 33153290 DOI: 10.1080/10408398.2020.1843133
    Chitosan is mainly derived from seafood by-products and the thereof chitosan nanoparticles (CNPs) are known as nontoxic, biocompatible, biodegradable and functionalized nanostructures. CNPs, as green fillers, showed an appropriate potential in reinforcement of various biodegradable composites for food packaging and biomedical applications. After evaluation of different fabrication approaches and characterization techniques of CNPs, the changes in physical, mechanical, thermal, structural, morphological, and antimicrobial attributes of nanobiocomposites as a result of CNPs addition are discussed. The influence of bioactive loaded-CNPs and hybrid CNPs with metal nanoparticles, graphene, and montmorillonite in nanocomposites is also presented. Finally, the safety aspects of CNPs-loaded structures are highlighted to evaluate their implementation in food packaging and biomedical systems. It can be concluded that regardless of a few drawbacks, CNPs are promising nanomaterials to improve various operational, structural and antimicrobial properties of biocomposites for various applications in food packaging, delivery systems and biomedical uses.
  11. Gao P, Mohd Noor NQI, Md Shaarani S
    PMID: 33356490 DOI: 10.1080/10408398.2020.1866490
    Food safety issues associated with aquatic food products become more important with the increasing consumption and followed by its ongoing challenges. The objective of this paper is to review the food safety hazards and health risks related to aquatic food products for the Southeast Asian region. These hazards can be categorized as microplastics (MPs) hazard, biological hazards (pathogenic bacteria, biogenic amines, viruses, parasites), and chemical hazards (antimicrobial, formaldehyde, heavy metal). In different Southeast Asian countries, the potential health risks of aquatic food products brought by food hazards to consumers were at different intensity and classes. Among all these hazards, pathogenic bacteria, antimicrobials, and heavy metal were a particular concern in the Southeast Asian region. With environmental changes, evolving consumption patterns, and the globalization of trade, new food safety challenges are created, which put forward higher requirements on food technologies, food safety regulations, and international cooperation.
  12. Gao P, Md Shaarani S, Mohd Noor NQI
    PMID: 38059602 DOI: 10.1080/10408398.2023.2289077
    The development of reliable and sensitive detection methods is essential for addressing the escalating concerns surrounding fish and fish products, driven by increasing market demands. This comprehensive review presents recent advances in detection approaches, specifically focusing on microplastic, biological, and chemical hazards associated with these products. The overview encompasses 21 distinct detection methods, categorized based on the type of hazard they target. For microplastic hazards, six methods are visual, spectroscopic, and thermal analyses. Biological hazard identification relies on six approaches employing nucleic-acid sequence, immunological, and biosensor technologies. The investigation of chemical hazards encompasses ten methods, including chromatography, spectroscopy, mass spectrometry, immunological, biosensor, and electrochemical techniques. The review provides in-depth insights into the basic principles, general characteristics, and the recognized advantages and disadvantages of each method. Moreover, it elaborates on recent advancements within these methodologies. The concluding section of the review discusses current challenges and outlines future perspectives for these detection methods. Overall, this comprehensive summary not only serves as a guide for researchers involved in fish safety and quality control but also emphasizes the significance of staying abreast of evolving detection technologies to ensure the continued safety of fish and fish products in response to emerging food safety hazards.
  13. Fatahi S, Nazary-Vannani A, Sohouli MH, Mokhtari Z, Kord-Varkaneh H, Moodi V, et al.
    Crit Rev Food Sci Nutr, 2021;61(20):3383-3394.
    PMID: 32744094 DOI: 10.1080/10408398.2020.1798350
    Inconsistencies exist with regard to influence of fasting and energy-restricting diets on markers of glucose and insulin controls. To address these controversial, this study was conducted to determine the impact of fasting diets on fasting blood sugars (FBSs), insulin, homeostatic model assessment insulin resistance (HOMA-IR) and hemoglobin A1c (HbA1c) levels. A comprehensive systematic search was carried out in electronic databases, i.e., Scopus, PubMed, and Web of Science through June 2019 for RCTs that investigated the impact of fasting and energy-restricting diets on circulating FBS, insulin, HOMA-IR and HbA1c levels from. Weighted mean difference (WMD) with the 95% CI were used for estimating combined effect size. The subgroup analysis was applied to specify the source of heterogeneity among articles. Pooled results from 30 eligible articles with 35 arms demonstrated a significant decrease in FBS (WMD): -3.376 mg/dl, 95% CI: -5.159, -1.594, p 8 weeks had a greater reduction in FBS, insulin and HOMA-IR level compared with other subgroups. The evidence from available studies suggests that the fasting or energy-restricting diets leads to significant reductions in FBS, insulin and HOMA-IR level and has modest, but, non-significant effects on HbA1c levels.
  14. Fang J, Liu C, Law CL, Mujumdar AS, Xiao HW, Zhang C
    Crit Rev Food Sci Nutr, 2023;63(27):8720-8736.
    PMID: 35389273 DOI: 10.1080/10408398.2022.2059440
    Heat processing is one of the most efficient strategies used in food industry to improve quality and prolong shelf life. However, conventional processing methods such as microwave heating, burning charcoal treatment, boiling, and frying are energy-inefficient and often lead to inferior product quality. Superheated steam (SHS) is an innovative technology that offers many potential benefits to industry and is increasingly used in food industry. Compared to conventional processing methods, SHS holds higher heat transfer coefficients, which can reduce microorganisms on surface of foodstuffs efficiently. Additionally, SHS generates a low oxygen environment, which prevents lipid oxidation and harmful compounds generation. Furthermore, SHS can facilitate development of desired product quality, such as protein denaturation with functional characteristics, proper starch gelatinization, and can also reduce nutrient loss, and improve the physicochemical properties of foodstuffs. The current work provides a comprehensive review of the impact of SHS on the nutritional, physicochemical, and safety properties of various foodstuffs including meat, fruits, and vegetables, cereals, etc. Additionally, it also provides food manufacturers and researchers with basic knowledge and practical techniques for SHS processing of foodstuffs, which may improve the current scope of SHS and transfer current food systems to a healthy and sustainable one.
  15. Fan Q, Zeng X, Wu Z, Guo Y, Du Q, Tu M, et al.
    PMID: 37318213 DOI: 10.1080/10408398.2023.2220803
    Lactic acid bacteria (LAB) is a type of probiotic that may benefit intestinal health. Recent advances in nanoencapsulation provide an effective strategy to protect them from harsh conditions via surface functionalization coating techniques. Herein, the categories and features of applicable encapsulation methods are compared to highlight the significant role of nanoencapsulation. Commonly used food-grade biopolymers (polysaccharides and protein) and nanomaterials (nanocellulose and starch nanoparticles) are summarized along with their characteristics and advances to demonstrate enhanced combination effects in LAB co-encapsulation. Nanocoating for LAB provides an integrity dense or smooth layer attributed to the cross-linking and assembly of the protectant. The synergism of multiple chemical forces allows for the formation of subtle coatings, including electrostatic attractions, hydrophobic interactions, π-π, and metallic bonds. Multilayer shells have stable physical transition properties that could increase the space between the probiotic cells and the outer environment, thus delaying the microcapsules burst time in the gut. Probiotic delivery stability can be promoted by enhancing the thickness of the encapsulated layer and nanoparticle binding. Maintenance of benefits and minimization of nanotoxicity are desirable, and green synthesized nanoparticles are emerging. Future trends include optimized formulation, especially using biocompatible materials, protein or plant-based materials, and material modification.
  16. Cheok CY, Mohd Adzahan N, Abdul Rahman R, Zainal Abedin NH, Hussain N, Sulaiman R, et al.
    Crit Rev Food Sci Nutr, 2018 Feb 11;58(3):335-361.
    PMID: 27246698 DOI: 10.1080/10408398.2016.1176009
    Recent rapid growth of the world's population has increased food demands. This phenomenon poses a great challenge for food manufacturers in maximizing the existing food or plant resources. Nowadays, the recovery of health benefit bioactive compounds from fruit wastes is a research trend not only to help minimize the waste burden, but also to meet the intensive demand from the public for phenolic compounds which are believed to have protective effects against chronic diseases. This review is focused on polyphenolic compounds recovery from tropical fruit wastes and its current trend of utilization. The tropical fruit wastes include in discussion are durian (Durio zibethinus), mangosteen (Garcinia mangostana L.), rambutan (Nephelium lappaceum), mango (Mangifera indica L.), jackfruit (Artocarpus heterophyllus), papaya (Carica papaya), passion fruit (Passiflora edulis), dragon fruit (Hylocereus spp), and pineapple (Ananas comosus). Highlights of bioactive compounds in different parts of a tropical fruit are targeted primarily for food industries as pragmatic references to create novel innovative health enhancement food products. This information is intended to inspire further research ideas in areas that are still under-explored and for food processing manufacturers who would like to minimize wastes as the norm of present day industry (design) objective.
  17. Chen Q, Dong L, Li Y, Liu Y, Xia Q, Sang S, et al.
    PMID: 36803106 DOI: 10.1080/10408398.2023.2179969
    Ovalbumin (OVA) is the most abundant protein in egg white, with excellent functional properties (e.g., gelling, foaming, emulsifying properties). Nevertheless, OVA has strong allergenicity, which is usually mediated by specific IgE thus results in gut microbiota dysbiosis and causes atopic dermatitis, asthma, and other inflammation actions. Processing technologies and the interactions with other active ingredients can influence the functional properties and allergic epitopes of OVA. This review focuses on the non-thermal processing technologies effects on the functional properties and allergenicity of OVA. Moreover, the research advance about immunomodulatory mechanisms of OVA-mediated food allergy and the role of gut microbiota in OVA allergy was summarized. Finally, the interactions between OVA and active ingredients (such as polyphenols and polysaccharides) and OVA-based delivery systems construction are summarized. Compared with traditional thermal processing technologies, novel non-thermal processing techniques have less damage to OVA nutritional value, which also improve OVA properties. OVA can interact with various active ingredients by covalent and non-covalent interactions during processing, which can alter the structure or allergic epitopes to affect OVA/active components properties. The interactions can promote OVA-based delivery systems construction, such as emulsions, hydrogels, microencapsulation, nanoparticles to encapsulate bioactive components and monitor freshness for improving foods quality and safety.
  18. Chang SK, Alasalvar C, Shahidi F
    Crit Rev Food Sci Nutr, 2019;59(10):1580-1604.
    PMID: 29360387 DOI: 10.1080/10408398.2017.1422111
    The term "superfruit" has gained increasing usage and attention recently with the marketing strategy to promote the extraordinary health benefits of some exotic fruits, which may not have worldwide popularity. This has led to many studies with the identification and quantification of various groups of phytochemicals. This contribution discusses phytochemical compositions, antioxidant efficacies, and potential health benefits of the main superfruits such as açai, acerola, camu-camu, goji berry, jaboticaba, jambolão, maqui, noni, and pitanga. Novel product formulations, safety aspects, and future perspectives of these superfruits have also been covered. Research findings from the existing literature published within the last 10 years have been compiled and summarized. These superfruits having numerous phytochemicals (phenolic acids, flavonoids, proanthocyanidins, iridoids, coumarins, hydrolysable tannins, carotenoids, and anthocyanins) together with their corresponding antioxidant activities, have increasingly been utilized. Hence, these superfruits can be considered as a valuable source of functional foods due to the phytochemical compositions and their corresponding antioxidant activities. The phytochemicals from superfruits are bioaccessible and bioavailable in humans with promising health benefits. More well-designed human explorative studies are needed to validate the health benefits of these superfruits.
  19. Chan Y, Raju Allam VSR, Paudel KR, Singh SK, Gulati M, Dhanasekaran M, et al.
    Crit Rev Food Sci Nutr, 2023;63(19):3302-3332.
    PMID: 34613853 DOI: 10.1080/10408398.2021.1986467
    Persistent respiratory tract inflammation contributes to the pathogenesis of various chronic respiratory diseases, such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. These inflammatory respiratory diseases have been a major public health concern as they are the leading causes of worldwide mortality and morbidity, resulting in heavy burden on socioeconomic growth throughout these years. Although various therapeutic agents are currently available, the clinical applications of these agents are found to be futile due to their adverse effects, and most patients remained poorly controlled with a low quality of life. These drawbacks have necessitated the development of novel, alternative therapeutic agents that can effectively improve therapeutic outcomes. Recently, nutraceuticals such as probiotics, vitamins, and phytochemicals have gained increasing attention due to their nutritional properties and therapeutic potential in modulating the pathological mechanisms underlying inflammatory respiratory diseases, which could ultimately result in improved disease control and overall health outcomes. As such, nutraceuticals have been held in high regard as the possible alternatives to address the limitations of conventional therapeutics, where intensive research are being performed to identify novel nutraceuticals that can positively impact various inflammatory respiratory diseases. This review provides an insight into the utilization of nutraceuticals with respect to their molecular mechanisms targeting multiple signaling pathways involved in the pathogenesis of inflammatory respiratory diseases.
  20. Chai TT, Tan YN, Ee KY, Xiao J, Wong FC
    Crit Rev Food Sci Nutr, 2019;59(sup1):S162-S177.
    PMID: 30663883 DOI: 10.1080/10408398.2018.1561418
    The emergence of bacterial resistance against conventional antibiotics and the growing interest in developing alternative, natural antibacterial agents have prompted the search for plant-derived antibacterial peptides in recent decades. Different classes of endogenous antibacterial peptides have been identified from various plant species. Moreover, protein hydrolysates and hydrolysate-derived peptides with potent antibacterial effects have also been identified from numerous plant sources. Antibacterial peptides are often cationic and amphipathic, consisting of fewer than 100 amino acids. They are able to disrupt bacterial membrane integrity via pore formation and/or compromise bacterial metabolic processes. In this review, we summarize current knowledge on the characteristics and modes of action of antibacterial peptides, as well as salient points concerning the production of antibacterial protein hydrolysates from plant proteins. Examples of plant-derived antibacterial hydrolysates and peptides will be highlighted, with particular attention to less explored seeds, fermented plant foods and agricultural by-products. Promising future research directions with regards to the application of plant-derived antibacterial hydrolysates and peptides in food preservation, farm animal disease management, and nutraceutical/functional food development will be proposed.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links