The emergence of bacterial resistance against conventional antibiotics and the growing interest in developing alternative, natural antibacterial agents have prompted the search for plant-derived antibacterial peptides in recent decades. Different classes of endogenous antibacterial peptides have been identified from various plant species. Moreover, protein hydrolysates and hydrolysate-derived peptides with potent antibacterial effects have also been identified from numerous plant sources. Antibacterial peptides are often cationic and amphipathic, consisting of fewer than 100 amino acids. They are able to disrupt bacterial membrane integrity via pore formation and/or compromise bacterial metabolic processes. In this review, we summarize current knowledge on the characteristics and modes of action of antibacterial peptides, as well as salient points concerning the production of antibacterial protein hydrolysates from plant proteins. Examples of plant-derived antibacterial hydrolysates and peptides will be highlighted, with particular attention to less explored seeds, fermented plant foods and agricultural by-products. Promising future research directions with regards to the application of plant-derived antibacterial hydrolysates and peptides in food preservation, farm animal disease management, and nutraceutical/functional food development will be proposed.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.