Displaying publications 1 - 20 of 2036 in total

Abstract:
Sort:
  1. Shankar PR, Hassali MA, Shahwani NA, Iqbal Q, Anwar M, Saleem F
    Lancet Glob Health, 2016 10;4(10):e689.
    PMID: 27633429 DOI: 10.1016/S2214-109X(16)30214-5
    Matched MeSH terms: Anti-Bacterial Agents*
  2. Zhang Y, Liu X, Yusoff M, Razali MH
    Scanning, 2021;2021:3839235.
    PMID: 34630820 DOI: 10.1155/2021/3839235
    Flower-like titanium dioxide (TiO2) nanostructures are successfully synthesized using a hybrid sol-gel and a simple hydrothermal method. The sample was characterized using various techniques to study their physicochemical properties and was tested as a photocatalyst for methyl orange degradation and as an antibacterial material. Raman spectrum and X-ray diffraction (XRD) pattern show that the phase structure of the synthesized TiO2 is anatase with 80-100 nm in diameter and 150-200 nm in length of flower-like nanostructures as proved by field emission scanning electron microscope (FESEM). The energy-dispersive X-ray spectroscopy (EDS) analysis of flower-like anatase TiO2 nanostructure found that only titanium and oxygen elements are present in the sample. The anatase phase was confirmed further by a high-resolution transmission electron microscope (HRTEM) and selected area electron diffraction (SAED) pattern analysis. The Brunauer-Emmett-Teller (BET) result shows that the sample had a large surface area (108.24 m2/g) and large band gap energy (3.26 eV) due to their nanosize. X-ray photoelectron spectroscopy (XPS) analysis revealed the formation of Ti4+ and Ti3+ species which could prevent the recombination of the photogenerated electron, thus increased the electron transportation and photocatalytic activity of flower-like anatase TiO2 nanostructure to degrade the methyl orange (83.03%) in a short time (60 minutes). These properties also support the good performance of flower-like titanium dioxide (TiO2) nanostructure as an antibacterial material which is comparable with penicillin which is 13.00 ± 0.02 mm inhibition zone against Staphylococcus aureus.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  3. Léger A, Lambraki I, Graells T, Cousins M, Henriksson PJG, Harbarth S, et al.
    J Antimicrob Chemother, 2021 01 01;76(1):1-21.
    PMID: 33057678 DOI: 10.1093/jac/dkaa394
    The global threat of antimicrobial resistance (AMR) requires coordinated actions by and across different sectors. Increasing attention at the global and national levels has led to different strategies to tackle the challenge. The diversity of possible actions to address AMR is currently not well understood from a One Health perspective. AMR-Intervene, an interdisciplinary social-ecological framework, describes interventions to tackle AMR in terms of six components: (i) core information about the publication; (ii) social system; (iii) bio-ecological system; (iv) triggers and goals; (v) implementation and governance; and (vi) assessment. AMR-Intervene provides a broadly applicable framework, which can inform the design, implementation, assessment and reporting of interventions to tackle AMR and, in turn, enable faster uptake of successful interventions to build societal resilience to AMR.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology; Anti-Bacterial Agents/therapeutic use
  4. Yong YK, Wen NCM, Yeo GEC, Chew ZX, Chan LL, Md Zain NZ, et al.
    PMID: 34574752 DOI: 10.3390/ijerph18189828
    Several bacterial species cause post-operative infections, which has been a critical health concern among hospital patients. Our study in this direction is a much-needed exploratory study that was carried out at the National Heart Institute (IJN) of Malaysia to examine the virulence properties of causative bacteria obtained from postoperative patients. The bacterial isolates and data were provided by the IJN. Antibiotic resistance gene patterns, and the ability to form biofilm were investigated for 127 isolates. Klebsiella pneumoniae (36.2%) was the most common isolate collected, which was followed by Pseudomonas aeruginosa (26%), Staphylococcus aureus (23.6%), Streptococcus spp. (8.7%) and Acinetobacter baumannii (5.5%). There were 49 isolates that showed the presence of multidrug resistance genes. The mecA gene was surprisingly found in methicillin-susceptible S. aureus (MSSA), which also carried the ermA gene from those erythromycin-susceptible strains. The phenotypic antibiotic resistance profiles varied greatly between isolates. Findings from the biofilm assay revealed that 44 of the 127 isolates demonstrated the ability to produce biofilms. Our findings provide insights into the possibility of some of these bacteria surviving under antibiotic stress, and some antibiotic resistance genes being silenced.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology; Anti-Bacterial Agents/therapeutic use
  5. Lim V
    MyJurnal
    The discovery of antibiotics had been one of the most significant events in the history of medicine. Antibiotics had saved countless number of lives and had contributed significantly to the health of mankind.The emergence of resistance is however a major threat to the continued usefulness of antibiotics. There are now strains of bacteria which are resistant to virtually all available antibiotics and these strains are increasingly being encountered in clinical practice. The development of new agents had not kept pace with resistance and it is unlikely that there will be major breakthroughs in the near future. The world needs to conserve and prolong the useful lives of the existing agents. This can only be achieved through good antibiotic stewardship programmes. As antibiotic resistance is a global threat all major stakeholders have to work together to meet this challenge.
    Matched MeSH terms: Anti-Bacterial Agents
  6. Loh SG
    Med J Malaya, 1951;5.
    A report is given of 60 cases of bronchopneumonia in infants treated with Aureomycin during a period of 4 months, Aureomycin was given orally in a mixture. Dosage depended on the severity of the infection, the age and weight of the patient. The results of this series are compared with a series of penicillin treated cases and showed a distinct improvement. The cure rate of Aureomycin treated cases is about 70%.
    Matched MeSH terms: Anti-Bacterial Agents
  7. Johns BM
    Matched MeSH terms: Anti-Bacterial Agents
  8. Sivasothy Y, Ibrahim H, Paliany AS, Alias SA, Awang K
    Bioorg Med Chem Lett, 2013 Dec 1;23(23):6280-5.
    PMID: 24144849 DOI: 10.1016/j.bmcl.2013.09.082
    The rhizomes of Alpinia pahangensis Ridley yielded a new bis-labdanic diterpene for which the name pahangensin A (1) was proposed along with a new labdane diterpene, pahangensin B (2). Their structures were elucidated by spectroscopic methods including, 1D and 2D NMR techniques and LCMS-IT-TOF analysis. Pahangensin A (1) was found to be an antibacterial agent against Staphylococcus aureus, Bacillus cereus and Bacillus subtilis with MIC values less than 100 μg/mL, respectively. Pahangensin B (2) exhibited antibacterial activity (MIC <100 μg/mL) against B. cereus.
    Matched MeSH terms: Anti-Bacterial Agents/analysis; Anti-Bacterial Agents/pharmacology; Anti-Bacterial Agents/chemistry*
  9. Krishnan R
    Med J Malaysia, 1990 Sep;45(3):267.
    PMID: 2152093
    Matched MeSH terms: Anti-Bacterial Agents/adverse effects*
  10. Mengting Z, Kurniawan TA, Yanping Y, Dzarfan Othman MH, Avtar R, Fu D, et al.
    J Environ Manage, 2020 Sep 15;270:110839.
    PMID: 32721303 DOI: 10.1016/j.jenvman.2020.110839
    We aim at fabricating a ternary magnetic recyclable Bi2WO6/BiOI@Fe3O4 composite that could be applied for photodegradation of tetracycline (TC) from synthetic wastewater. To identify any changes with respect to the composite's morphology and crystal structure properties, ΧRD, FTIR, FESEM-EDS, PL and VSM analyses are carried out. The effects of Fe3O4 loading ratio on the Bi2WO6/BiOI for TC photodegradation are evaluated, while operational parameters such as pH, reaction time, TC concentration, and photocatalyst's dose are optimized. Removal mechanisms of the TC by the composite and its photodegradation pathways are elaborated. With respect to its performance, under the same optimized conditions (1 g/L of dose; 5 mg/L of TC; pH 7; 3 h of reaction time), the Bi2WO6/BiOI@5%Fe3O4 composite has the highest TC removal (97%), as compared to the Bi2WO6 (63%). After being saturated, the spent photocatalyst could be magnetically separated from solution for subsequent use. In spite of three consecutive cycles with 71% of efficiency, the spent composite still has reasonable photocatalytic activities for reuse. Overall, this suggests that the composite is a promising photocatalyst for TC removal from aqueous solutions.
    Matched MeSH terms: Anti-Bacterial Agents*
  11. Pulingam T, Thong KL, Appaturi JN, Lai CW, Leo BF
    Chemosphere, 2021 Oct;281:130739.
    PMID: 34004516 DOI: 10.1016/j.chemosphere.2021.130739
    Recent advances in the field of nanotechnology contributed to the increasing use of nanomaterials in the engineering, health and biological sectors. Graphene oxide (GO) has great potentials as it could be fine-tuned to be adapted into various applications, especially in the electrical, electronic, industrial and clinical fields. One of the important applications of GO is its use as an antibacterial material due to its promising activity against a broad range of bacteria. However, our understanding of the mechanism of action of GO towards bacteria is still lacking and is often less described. Therefore, a comprehensive overview of bactericidal mechanistic actions of GO and the roles of physicochemical factors including size, aggregation, functionalization and adsorption behavior contributing to its antibacterial activities are described in this review. As the use of GO is expected to increase exponentially in the health sector, the cytotoxicity of GO among the cell lines is also discussed. Thus, this review emphasizes the physicochemical characteristics of GO that can be tailored for optimal antibacterial properties that is of importance to the health industry.
    Matched MeSH terms: Anti-Bacterial Agents/toxicity
  12. Samrot AV, Abubakar Mohamed A, Faradjeva E, Si Jie L, Hooi Sze C, Arif A, et al.
    Medicina (Kaunas), 2021 Aug 18;57(8).
    PMID: 34441045 DOI: 10.3390/medicina57080839
    Biofilms comprising aggregates of microorganisms or multicellular communities have been a major issue as they cause resistance against antimicrobial agents and biofouling. To date, numerous biofilm-forming microorganisms have been identified, which have been shown to result in major effects including biofouling and biofilm-related infections. Quorum sensing (which describes the cell communication within biofilms) plays a vital role in the regulation of biofilm formation and its virulence. As such, elucidating the various mechanisms responsible for biofilm resistance (including quorum sensing) will assist in developing strategies to inhibit and control the formation of biofilms in nature. Employing biological control measures (such as the use of bioactive compounds) in targeting biofilms is of great interest since they naturally possess antimicrobial activity among other favorable attributes and can also possibly act as potent antibiofilm agents. As an effort to re-establish the current notion and understanding of biofilms, the present review discuss the stages involved in biofilm formation, the factors contributing to its development, the effects of biofilms in various industries, and the use of various bioactive compounds and their strategies in biofilm inhibition.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  13. Porter GC, Safii SH, Medlicott NJ, Duncan WJ, Tompkins GR, Coates DE
    Planta Med, 2021 Mar;87(3):253-266.
    PMID: 33434939 DOI: 10.1055/a-1330-8765
    Manuka oil, an essential oil derived from the Leptospermum scoparium, has been traditionally used for wound care and as a topical antibacterial, antifungal, and anti-inflammatory. However, the essential oil is not well retained at mucosal sites, such as the oral cavity, where the benefits of the aforementioned properties could be utilized toward the treatment of persistent biofilms. Within this study, L. scoparium essential oil was incorporated into a semisolid emulsion for improved delivery. The safety profile of L. scoparium essential oil on human gingival fibroblasts was determined via cell viability, cytotoxicity, and caspase activation. The minimal bactericidal concentration of L. scoparium essential oil was determined, and the emulsion's antibiofilm effects visualized using confocal laser scanning microscopy. L. scoparium essential oil demonstrated a lower IC50 (0.02% at 48 h) when compared to the clinical control chlorhexidine (0.002% at 48 h) and displayed lower cumulative cytotoxicity. Higher concentrations of L. scoparium essential oil (≥ 0.1%) at 6 h resulted in higher caspase 3/7 activation, suggesting an apoptotic pathway of cell death. A minimal bactericidal concentration of 0.1% w/w was observed for 6 oral bacteria and 0.01% w/v for Porphyromonas gingivalis. Textural and rheometric analysis indicated increased stability of emulsion with a 1 : 3 ratio of L. scoparium essential oil: Oryza sativa carrier oil. The optimized 5% w/w L. scoparium essential oil emulsion showed increased bactericidal penetrative effects on Streptococci gordonii biofilms compared to oil alone and to chlorhexidine controls. This study has demonstrated the safety, formulation, and antimicrobial activity of L. scoparium essential oil emulsion for potential antibacterial applications at mucosal sites.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  14. Wei W, Jiang N, Mei YN, Chu YL, Ge HM, Song YC, et al.
    Phytochemistry, 2014 Apr;100:103-9.
    PMID: 24529576 DOI: 10.1016/j.phytochem.2014.01.003
    In searching for symbionts derived from bioactive natural products, six sulfureous diketopiperazines designated as lasiodiplines A-F (1-6) were characterized from the culture of Lasiodiplodia pseudotheobromae F2, previously residing in the apparently normal flower of Illigera rhodantha (Hernandiaceae). Identification of structures was accomplished by a combination of spectroscopic and computational approaches, in conjunction with the low-temperature (100K) single-crystal X-ray diffraction with Cu Kα radiation. Lasiodipline E (5) was demonstrated to be antibacterial against the clinical strains Streptococcus sp., Bacteroides vulgates, Peptostreptococcus sp. and Veillonella parvula, respectively, with an minimum inhibitory concentration (MIC) range of 0.12-0.25 μg/mL. In addition, compounds 4 and 6 exemplify two unusual architectures of natural cyclodipeptides, signifying the unique biochemical characteristics of the producing fungus.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification; Anti-Bacterial Agents/metabolism*; Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry
  15. Monowar T, Bhore SJ
    Lancet Infect Dis, 2014 Jul;14(7):549.
    PMID: 24964938 DOI: 10.1016/S1473-3099(14)70799-6
    Matched MeSH terms: Anti-Bacterial Agents/administration & dosage*; Anti-Bacterial Agents/adverse effects*
  16. Jafarzade M, Yahya NA, Shayesteh F, Usup G, Ahmad A
    J Microbiol, 2013 Jun;51(3):373-9.
    PMID: 23812818 DOI: 10.1007/s12275-013-2440-2
    This study was undertaken to investigate the influence of culture conditions and medium components on production of antibacterial compounds by Serratia sp. WPRA3 (JX020764) which was isolated from marine water of Port Dickson, Malaysia. Biochemical, morphological, and molecular characteristics suggested that the isolate is a new candidate of the Serratia sp. The isolate showed strong antimicrobial activity against fungi, Gram-negative and Gram-positive bacteria. This bacterium exhibited optimum antibacterial compounds production at 28°C, pH 7 and 200 rev/min aeration during 72 h of incubation period. Highest antibacterial activity was obtained when sodium chloride (2%), yeast extract (0.5%), and glucose concentration (0.75%) were used as salt, nitrogen, and carbon sources respectively. Different active fractions were obtained by Thin-Layer Chromatography (TLC) and Flash Column Chromatography (FCC) from ethyl acetate crude extracts namely OCE and RCE in different culture conditions, OCE (pH 5, 200 rev/min) and RCE (pH 7/without aeration). In conclusion, the results suggested different culture conditions have a significant impact on the types of secondary metabolites produced by the bacterium.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism*; Anti-Bacterial Agents/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links