Objective: In this paper, we reported the identification of six differentially expressed proteins isolated from cancer cells, following exposure to the cytotoxic fern extracts.
Materials and Methods: The identities of these cancer proteins were determined by matrix-assisted laser desorption ionization time-of-flight protein sequencing.
Results: The cancer proteins were identified as follows: elongation factor 1-γ, glyceraldehydes-3-phosphate dehydrogenase, heat shock protein 90-β, heterogeneous nuclear ribonucleoprotein-A2/B1, truncated nucleolar phosphoprotein B23, and tubulin-β chain. To the best of our knowledge, this paper represents the first time these cancer proteins are being reported, following exposure to the aforementioned cytotoxic fern extracts.
Conclusion: It is hoped that further efforts in this direction could lead to the identification and development of target-specific chemotherapeutic agents.
SUMMARY: Cytotoxic fern extracts were tested in anti-cancer proteomic works.Six differentially-expressed cancer proteins were identified.Potential anti-cancer protein targets were reported. Abbreviations used: EF: Elongation factor; HRP: Horseradish peroxidase; HSP: Heat shock protein; MALDI: Matrix-assisted laser desorption/ionization.
SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10989-021-10214-y.
RESULTS: L. leucocephala leachate enhanced electrolyte leakage from water hyacinth leaf discs in a concentration-dependent manner. Control experiments eliminated the possibilities that increased membrane permeability in the leachate-treated leaf discs was due to pH or osmotic effects of the leachate. Thus, the loss of membrane stability in the leachate-treated leaf discs was likely due to phytotoxins detected in the leachate, namely mimosine and phenolic constituents. Decline in tissue respiration was detected in leachate-treated water hyacinth leaf discs. This suggests that the L. leucocephala leachate may contain compounds which acted as respiratory inhibitors. Enhanced reactive oxygen species production coincided with inhibition of catalase and ascorbate peroxidase activities in the leachate-treated water hyacinth leaf tissues. The injurious effects of L. leucocephala leachate on water hyacinth leaf discs probably involved direct inhibition of antioxidant enzymes in addition to direct involvement of some allelochemicals in reactive oxygen species formation.
CONCLUSION: In summary, the toxic effects of L. leucocephala leachate on water hyacinth leaf discs likely lay in its ability to effectively compromise the membrane integrity, tissue respiration and antioxidant defence of the latter.
RESULTS: Aqueous extracts of the leaves and rhizomes of Cyathea latebrosa, Dicranopteris curranii, Gleichenia truncata, and Phymatopteris triloba were analysed. P. triloba leaf extract had the highest contents of total flavonoids (118.6 mg/g dry matter), hydroxycinnamic acids (69.7 mg/g dry matter), and proanthocyanidins (29.4 mg/g dry matter). P. triloba leaf and rhizome extracts as well as G. truncata leaf extract inhibited the growth of both Gram-positive and Gram-negative bacteria. P. triloba leaf extract produced a minimum inhibitory concentration (MIC) value of 0.78 mg dry matter/mL when tested against Pseudomonas aeruginosa, which is 2.5-fold higher than that of ampicillin. Among all extracts, P. triloba leaf extract had the highest anti-glucosidase activity (EC50 = 56 μg dry matter/mL) and also the highest antioxidant potential based on DPPH radical scavenging and Ferric Reducing Antioxidant Power assays. Antioxidant activities of both the leaf and rhizome extracts correlated positively with total flavonoid and hydroxycinnamic acid contents (R(2) = 0.80-0.95). On the other hand, anti-glucosidase activity correlated with total proanthocyanidin contents in both the leaf and rhizome extracts (R(2) = 0.62-0.84).
CONCLUSIONS: In conclusion, highland ferns are potential sources of antibacterial agents, glucosidase inhibitors, and antioxidants.