Displaying publications 41 - 60 of 228 in total

Abstract:
Sort:
  1. Cheng SY, Show PL, Juan JC, Ling TC, Lau BF, Lai SH, et al.
    Environ Res, 2020 09;188:109737.
    PMID: 32554270 DOI: 10.1016/j.envres.2020.109737
    Sustainable wastewater treatment necessitates the application of natural and green material in the approach. Thus, selecting a natural coagulant in leachate treatment is a crucial step in landfill operation to prevent secondary environmental pollution due to residual inorganic coagulant in treated effluent. Current study investigated the application of guar gum in landfill leachate treatment. Central composite design in response surface methodology was used to optimize the performance of Chemical Oxygen Demand (COD) removal. Quadratic model developed indicated the optimum COD removal 22.57% at guar gum dosage of 44.39 mg/L, pH 8.56 (natural pH of leachate) and mixing speed 79.27 rpm. Scanning electron microscopy showed that floc was compact and energy-dispersive-x-ray analysis showed that guar gum was capable to adsorb multiple ions from the leachate. Structural characterization using Fourier Transform Infrared analysis demonstrated that hydrogen bonding between guar and pollutant particles was involved in coagulation and flocculation process. Therefore, guar gum coagulant present potential to be an alternative in leachate treatment where pH requirement is not required during treatment. Simultaneously, adsorption by guar gum offers added pollutant removal advantage.
  2. Cheng Z, Li HH, Wang HS, Zhu XM, Sthiannopkao S, Kim KW, et al.
    Environ Res, 2016 Oct;150:423-30.
    PMID: 27372065 DOI: 10.1016/j.envres.2016.06.011
    Phthalate esters are used in a wide variety of consumer products, and human exposure to this class of compounds is widespread. Nevertheless, studies on dietary exposure of human to phthalates are limited. In this study, to assess the daily intakes of phthalate esters and the possible adverse health impacts, different food samples were collected from three areas of Cambodia, one of the poorest countries in the world. The ∑phthalate ester concentrations in Kampong Cham, Kratie and Kandal provinces ranged from 0.05 to 2.34 (median 0.88) μgg(-1), 0.19-1.65 (median 0.86) μgg(-1) and 0.24-3.05 (median 0.59) μgg(-1) wet weight (ww), respectively. Di-2-Ethylhexyl phthalate (DEHP) and diisobutyl phthalate (DiBP) were the predominant compounds among all foodstuffs. The estimated daily intake (EDI) of phthalate esters for the general population in Kampong Cham, Kratie and Kandal was 34.3, 35.6 and 35.8μgkg(-1) bw d(-1), respectively. The dietary daily intake of DEHP, benzylbutyl phthalate (BBP) and di-n-butyl phthalate (DBP) in Kampong Cham, Kratie and Kandal were below the tolerable daily intakes (TDI) imposed by the European Food Safety Authority (EFSA) and reference doses (RfD) imposed by The United States Environmental Protection Agency (USEPA). Rice contributed the greatest quantity of DEHP to the daily intake in Cambodia so may deserve further exploration. To our knowledge, this is the first study to investigate the occurrence and the daily intakes of phthalate esters in Cambodia.
  3. Chowdhury MA, Shuvho MBA, Shahid MA, Haque AKMM, Kashem MA, Lam SS, et al.
    Environ Res, 2021 Jan;192:110294.
    PMID: 33022215 DOI: 10.1016/j.envres.2020.110294
    The rapid spread of COVID-19 has led to nationwide lockdowns in many countries. The COVID-19 pandemic has played serious havoc on economic activities throughout the world. Researchers are immensely curious about how to give the best protection to people before a vaccine becomes available. The coronavirus spreads principally through saliva droplets. Thus, it would be a great opportunity if the virus spread could be controlled at an early stage. The face mask can limit virus spread from both inside and outside the mask. This is the first study that has endeavoured to explore the design and fabrication of an antiviral face mask using licorice root extract, which has antimicrobial properties due to glycyrrhetinic acid (GA) and glycyrrhizin (GL). An electrospinning process was utilized to fabricate nanofibrous membrane and virus deactivation mechanisms discussed. The nanofiber mask material was characterized by SEM and airflow rate testing. SEM results indicated that the nanofibers from electrospinning are about 15-30 μm in diameter with random porosity and orientation which have the potential to capture and kill the virus. Theoretical estimation signifies that an 85 L/min rate of airflow through the face mask is possible which ensures good breathability over an extensive range of pressure drops and pore sizes. Finally, it can be concluded that licorice root membrane may be used to produce a biobased face mask to control COVID-19 spread.
  4. Chua MX, Cheah YT, Tan WH, Chan DJC
    Environ Res, 2023 May 01;224:115544.
    PMID: 36822535 DOI: 10.1016/j.envres.2023.115544
    Conventional establishment of laboratory cultures of duckweed Lemna minor are prepared in beakers, Erlenmeyer flasks or Schott bottles. These conventional cultivation methods limit the available surface area for growth which then causes layering of fronds that reduces the efficiency of plants in sunlight capturing. Here, acrylic sheets were spray-coated with a superhydrophobic (SHP) beeswax suspension and these coated acrylic sheets were used as a novel cultivation platform for L. minor. L. minor was grown for 7 days in conventional glass jar which acted as the control and were compared to SHP coated acrylic (SHPA) and SHP coated acrylic with aluminium mesh centrally placed (SHPAM) at similar duration and cultivation conditions. Addition of mesh was to entrap the plantlets and fixed the plantlets' position on the growing platform. The effects of cultivation platforms on growth rate and biochemical compositions of L. minor were monitored. The highest biomass growth was obtained from SHPA cultivation where the relative growth rate (RGR) was 0.0909 ± 0.014 day-1 and the RGR was 2.17 times higher than the control. Moreover, L. minor harvested from SHPA displayed the highest values in total protein content, total carbohydrates content and crude lipid percentage. The values were 156.04 ± 12.13 mg/g, 94.75 ± 9.02 mg/g and 7.09 ± 1.14% respectively. However, the control showed the highest total chlorophyll content which was 0.7733 ± 0.042 mg/g FW. Although SHPA obtained a slightly lower chlorophyll content than the control, this growing platform is still promising as it displayed the highest growth rate as well as other biochemical composition. Hence, this study proved that the proposed method that applied superhydrophobic properties in cultivation of L. minor provided a larger surface area for L. minor to grow, which then resulted in a greater biomass production while simultaneously maintaining the quality of the biochemical compositions of duckweeds.
  5. Chuah LF, Mokhtar K, Mhd Ruslan SM, Bakar AA, Abdullah MA, Osman NH, et al.
    Environ Res, 2023 Apr 01;222:115348.
    PMID: 36731596 DOI: 10.1016/j.envres.2023.115348
    The International Maritime Organization has set a goal to achieve a 50% reduction of total annual greenhouse gas emission related to the international shipping by 2050 compared to the 2008 baseline emissions. Malaysia government has taken an initiative to investigate the assessment (cost-effectiveness) of this International Maritime Organization's short-term measure on Malaysian-registered domestic ships although this measure is only for international merchant ship. To achieve this, this paper collected the ship's data from the shipowners from 25 sample ships. Engine power limitation is the most cost-effective option, but low power limits can lead to substantially increased sailing times. Based on cost-efficiency analysis, it creates for the purpose of compliance with the operational carbon intensity indicator. It found that even if it is possible to bring an asset back into service, it may not be possible to do so in a manner that generates a profit or complies with applicable regulations. In these situations, it may be more prudent to scrap the asset rather than run the risk of having it become a stranded asset. This is especially true for older tankers. Alternatives with lengthy payback periods are not desirable for the domestic tanker fleet that is already in operation.
  6. Clark CS, Rampal KG, Thuppil V, Roda SM, Succop P, Menrath W, et al.
    Environ Res, 2009 Oct;109(7):930-6.
    PMID: 19656507 DOI: 10.1016/j.envres.2009.07.002
    In 2006 a report on the analysis for lead in 80 new residential paints from four countries in Asia revealed high levels in three of the countries (China, India and Malaysia) and low levels in a fourth country (Singapore) where a lead in paint regulation was enforced. The authors warned of the possible export of lead-painted consumer products to the United States and other countries and the dangers the lead paint represented to children in the countries where it was available for purchase. The need for a worldwide ban on the use of lead in paints was emphasized to prevent an increase in exposure and disease from this very preventable environmental source. Since the earlier paper almost 300 additional new paint samples have been collected from the four initial countries plus 8 additional countries, three from Asia, three from Africa and two from South America. During the intervening time period two million toys and other items imported into the United States were recalled because the lead content exceeded the United States standard. High lead paints were detected in all 12 countries. The average lead concentration by country ranged from 6988 (Singapore) to 31,960ppm (Ecuador). One multinational company sold high lead paint in one country through January 2007 but sold low lead paint later in 2007 indicating that a major change to cease adding lead to their paints had occurred. However, the finding that almost one-third of the samples would meet the new United States standard for new paint of 90ppm, suggests that the technology is already available in at least 11 of the 12 countries to produce low lead enamel paints for domestic use. The need remains urgent to establish effective worldwide controls to prevent the needless poisoning of millions of children from this preventable exposure.
  7. Clark CS, Rampal KG, Thuppil V, Chen CK, Clark R, Roda S
    Environ Res, 2006 Sep;102(1):9-12.
    PMID: 16782088
    Worldwide prohibitions on lead gasoline additives were a major international public health accomplishment, the results of which are still being documented in parts of the world. Although the need to remove lead from paints has been recognized for over a century, evidence reported in this article indicates that lead-based paints for household use, some containing more than 10% lead, are readily available for purchase in some of the largest countries in the world. Sixty-six percent of new paint samples from China, India, and Malaysia were found to contain 5000 ppm (0.5%) or more of lead, the US definition of lead-based paint in existing housing, and 78% contained 600 ppm (0.06%) or more, the limit for new paints. In contrast, the comparable levels in a nearby developed country, Singapore, were 0% and 9%. In examining lead levels in paints of the same brands purchased in different countries, it was found that some brands had lead-based paints in one of the countries and paints meeting US limits in another; another had lead-free paint available in all countries where samples were obtained. Lead-based paints have already poisoned millions of children and likely will cause similar damage in the future as paint use increases as countries in Asia and elsewhere continue their rapid development. The ready availability of lead-based paints documented in this article provides stark evidence of the urgent need for efforts to accomplish an effective worldwide ban on the use of lead in paint.
  8. Dada AO, Inyinbor AA, Tokula BE, Bayode AA, Obayomi KS, Ajanaku CO, et al.
    Environ Res, 2024 May 02.
    PMID: 38704004 DOI: 10.1016/j.envres.2024.119046
    Reports have shown that malachite green (MG) dye causes various hormonal disruptions and health hazards, hence, its removal from water has become a top priority. In this work, zinc oxide decorated plantain peels activated carbon (ZnO@PPAC) was developed via a hydrothermal approach. Physicochemical characterization of the ZnO@PPAC nanocomposite with a 205.2 m2/g surface area, porosity of 614.68 and dominance of acidic sites from Boehm study established the potency of ZnO@PPAC. Spectroscopic characterization of ZnO@PPAC vis-a-viz thermal gravimetric analyses (TGA), Fourier Transform Infrared Spectroscopy (FTIR), Powdered X-ray Diffraction (PXRD), Scanning Electron Microscopy and High Resolution - Transmission Electron Microscopy (HR-TEM) depict the thermal stability via phase transition, functional group, crystallinity with interspatial spacing, morphology and spherical and nano-rod-like shape of the ZnO@PPAC heterostructure with electron mapping respectively. Adsorption of malachite green dye onto ZnO@PPAC nanocomposite was influenced by different operational parameters. Equilibrium data across the three temperatures (303, 313, and 323 K) were most favorably described by Freundlich indicating the ZnO@PPAC heterogeneous nature. 77.517 mg/g monolayer capacity of ZnO@PPAC was superior to other adsorbents compared. Pore-diffusion predominated in the mechanism and kinetic data best fit the pseudo-second-order. Thermodynamics studies showed the feasible, endothermic, and spontaneous nature of the sequestration. The ZnO@PPAC was therefore shown to be a sustainable and efficient material for MG dye uptake and hereby endorsed for the treatment of industrial effluent.
  9. Dai C, Han Y, Duan Y, Lai X, Fu R, Liu S, et al.
    Environ Res, 2022 Apr 01;205:112423.
    PMID: 34838568 DOI: 10.1016/j.envres.2021.112423
    The rapid economic and population growth in coastal areas is causing increasingly serious polycyclic aromatic hydrocarbons (PAHs) pollution in these regions. This review compared the PAHs pollution characteristics of different coastal areas, including industrial zones, commercial ports, touristic cities, aquacultural & agricultural areas, oil & gas exploitation areas and megacities. Currently there are various treatment methods to remediate soils and sediments contaminated with PAHs. However, it is necessary to provide a comprehensive overview of all the available remediation technologies up to date, so appropriate technologies can be selected to remediate PAHs pollution. In view of that, we analyzed the characteristics of the remediation mechanism, summarized the remediation methods for soil or sediments in coastal areas, which were physical repair, chemical oxidation, bioremediation and integrated approaches. Besides, this review also reported the development of new multi-functional green and sustainable systems, namely, micro-nano bubble (MNB), biochar, reversible surfactants and peracetic acid. While physical repair, expensive but efficient, was regarded as a suitable method for the PAHs remediation in coastal areas because of land shortage, integrated approaches would produce better results. The ultimate aim of the review was to ensure the successful restructuring of PAHs contaminated soil and sediments in coastal areas. Due to the environment heterogeneity, PAHs pollution in coastal areas remains as a daunting challenge. Therefore, new and suitable technologies are still needed to address the environmental issue.
  10. Elancheziyan M, Prakasham K, Eswaran M, Duraisamy M, Ganesan S, Lee SL, et al.
    Environ Res, 2023 Apr 15;223:115403.
    PMID: 36754108 DOI: 10.1016/j.envres.2023.115403
    The design and development of eco-friendly fabrication of cost-effective electrochemical nonenzymatic biosensors with enhanced sensitivity and selectivity are one of the emerging area in nanomaterial and analytical chemistry. In this aspect, we developed a facile fabrication of tertiary nanocomposite material based on cobalt and polymelamine/nitrogen-doped graphitic porous carbon nanohybrid composite (Co-PM-NDGPC/SPE) for the application as a nonenzymatic electrochemical sensor to quantify glucose in human blood samples. Co-PM-NDGPC/SPE nanocomposite electrode fabrication was achieved using a single-step electrodeposition method under cyclic voltammetry (CV) technique under 1 M NH4Cl solution at 20 constitutive CV cycles (sweep rate 20 mV/s). Notably, the fabricated nonenzymatic electroactive nanocomposite material exhibited excellent electrocatalytic sensing towards the quantification of glucose in 0.1 M NaOH over a wide concentration range from 0.03 to 1.071 mM with a sensitive limit of detection 7.8 μM. Moreover, the Co-PM-NDGPC nanocomposite electrode with low charge transfer resistance (Rct∼81 Ω) and high ionic diffusion indicates excellent stability, reproducibility, and high sensitivity. The fabricated nanocomposite materials exhibit a commendable sensing response toward glucose molecules present in the blood serum samples recommends its usage in real-time applications.
  11. Evans MN, Waller S, Müller CT, Goossens B, Smith JA, Bakar MSA, et al.
    Environ Res, 2022 May 01;207:112216.
    PMID: 34656630 DOI: 10.1016/j.envres.2021.112216
    Patterns and practices of agricultural expansion threaten the persistence of global biodiversity. Wildlife species surviving large-scale land use changes can be exposed to a suite of contaminants that may deleteriously impact their health. There is a paucity of data concerning the ecotoxicological impacts associated with the global palm oil (Elaeis guineensis) industry. We sampled wild Malay civets (Viverra tangalunga) across a patchwork landscape degraded by oil palm agriculture in Sabah, Malaysian Borneo. Using a non-lethal methodology, we quantified the levels of 13 essential and non-essential metals within the hair of this adaptable small carnivore. We robustly assessed the biological and environmental drivers of intrapopulation variation in measured levels. Metal concentrations were associated with civet age, weight, proximity to a tributary, and access to oxbow lakes. In a targeted case study, the hair metal profiles of 16 GPS-collared male civets with differing space use patterns were contrasted. Civets that entered oil palm plantations expressed elevated aluminium, cadmium, and lead, and lower mercury hair concentrations compared to civets that remained exclusively within the forest. Finally, we paired hair metal concentrations with 34 blood-based health markers to evaluate the possible sub-lethal physiological effects associated with varied hair metal levels. Our multi-facetted approach establishes these adaptable carnivores as indicator species within an extensively altered ecosystem, and provides critical and timely evidence for future studies.
  12. Fan YV, Čuček L, Si C, Jiang P, Vujanović A, Krajnc D, et al.
    Environ Res, 2024 Jan 15;241:117581.
    PMID: 37967705 DOI: 10.1016/j.envres.2023.117581
    Plastic consumption and its end-of-life management pose a significant environmental footprint and are energy intensive. Waste-to-resources and prevention strategies have been promoted widely in Europe as countermeasures; however, their effectiveness remains uncertain. This study aims to uncover the environmental footprint patterns of the plastics value chain in the European Union Member States (EU-27) through exploratory data analysis with dimension reduction and grouping. Nine variables are assessed, ranging from socioeconomic and demographic to environmental impacts. Three clusters are formed according to the similarity of a range of characteristics (nine), with environmental impacts being identified as the primary influencing variable in determining the clusters. Most countries belong to Cluster 0, consisting of 17 countries in 2014 and 18 countries in 2019. They represent clusters with a relatively low global warming potential (GWP), with an average value of 2.64 t CO2eq/cap in 2014 and 4.01 t CO2eq/cap in 2019. Among all the assessed countries, Denmark showed a significant change when assessed within the traits of EU-27, categorised from Cluster 1 (high GWP) in 2014 to Cluster 0 (low GWP) in 2019. The analysis of plastic packaging waste statistics in 2019 (data released in 2022) shows that, despite an increase in the recovery rate within the EU-27, the GWP has not reduced, suggesting a rebound effect. The GWP tends to increase in correlation with the higher plastic waste amount. In contrast, other environmental impacts, like eutrophication, abiotic and acidification potential, are identified to be mitigated effectively via recovery, suppressing the adverse effects of an increase in plastic waste generation. The five-year interval data analysis identified distinct clusters within a set of patterns, categorising them based on their similarities. The categorisation and managerial insights serve as a foundation for devising a focused mitigation strategy.
  13. Fardi Z, Shahbeik H, Nosrati M, Motamedian E, Tabatabaei M, Aghbashlo M
    Environ Res, 2024 Feb 01;242:117614.
    PMID: 37996005 DOI: 10.1016/j.envres.2023.117614
    Waste-to-energy conversion presents a pivotal strategy for mitigating the energy crisis and curbing environmental pollution. Pyrolysis is a widely embraced thermochemical approach for transforming waste into valuable energy resources. This study delves into the co-pyrolysis of terrestrial biomass (potato peel) and marine biomass (Sargassum angastifolium) to optimize the quantity and quality of the resultant bio-oil and biochar. Initially, thermogravimetric analysis was conducted at varying heating rates (5, 20, and 50 °C/min) to elucidate the thermal degradation behavior of individual samples. Subsequently, comprehensive analyses employing FTIR, XRD, XRF, BET, FE-SEM, and GC-MS were employed to assess the composition and morphology of pyrolysis products. Results demonstrated an augmented bio-oil yield in mixed samples, with the highest yield of 27.1 wt% attained in a composition comprising 75% potato peel and 25% Sargassum angastifolium. As confirmed by GC-MS analysis, mixed samples exhibited reduced acidity, particularly evident in the bio-oil produced from a 75% Sargassum angastifolium blend, which exhibited approximately half the original acidity. FTIR analysis revealed key functional groups on the biochar surface, including O-H, CO, and C-O moieties. XRD and XRF analyses indicated the presence of alkali and alkaline earth metals in the biochar, while BET analysis showed a surface area ranging from 0.64 to 1.60 m2/g. The favorable characteristics of the products highlight the efficacy and cost-effectiveness of co-pyrolyzing terrestrial and marine biomass for the generation of biofuels and value-added commodities.
  14. Fong FC, Smith DR
    Environ Res, 2022 Sep;212(Pt A):113099.
    PMID: 35305982 DOI: 10.1016/j.envres.2022.113099
    The exposure-lag response of air temperature on daily COVID-19 incidence is unclear and there have been concerns regarding the robustness of previous studies. Here we present an analysis of high spatial and temporal resolution using the distributed lag non-linear modelling (DLNM) framework. Utilising nearly two years' worth of data, we fit statistical models to twelve Italian cities to quantify the delayed effect of air temperature on daily COVID-19 incidence, accounting for several categories of potential confounders (meteorological, air quality and non-pharmaceutical interventions). Coefficients and covariance matrices for the temperature term were then synthesised using random effects meta-analysis to yield pooled estimates of the exposure-lag response with effects presented as the relative risk (RR) and cumulative RR (RRcum). The cumulative exposure response curve was non-linear, with peak risk at 15.1 °C and declining risk at progressively lower and higher temperatures. The lowest RRcum at 0.2 °C is 0.72 [0.56,0.91] times that of the highest risk. Due to this non-linearity, the shape of the lag response curve necessarily varied by temperature. This work suggests that on a given day, air temperature approximately 15 °C maximises the incidence of COVID-19, with the effects distributed in the subsequent ten days or more.
  15. Gabris MA, Rezania S, Rafieizonooz M, Khankhaje E, Devanesan S, AlSalhi MS, et al.
    Environ Res, 2022 May 01;207:112209.
    PMID: 34653412 DOI: 10.1016/j.envres.2021.112209
    The present study reports the successful functionalization/magnetization of bio-polymer to produce chitosan-magnetic graphene oxide grafted polyaniline doped with cobalt oxide (ChMGOP-Co3O4). Analytical techniques furrier transform infra-red (FT-IR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) were used to confirm the formation of ChMGOP-Co3O4. The effects of several experimental factors (solution pH, adsorbent dosage and coexisting ions) on the uptake of As(V) ions using ChMGOP-Co3O4 were examined through batch experiments. As(V) removal process was validated by experimentally and theoretically investigating the adsorption capacity, rate, and thermal effects. Thermodynamic parameters such as free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) were also calculated and were used to explain the mechanism of adsorption. Based on the results, the sorbent showed a high adsorption capacities (90.91 mg/g) at favorable neutral pH and superior removal efficiencies as high as 89% within 50 min. In addition, the adsorption isotherm followed the Langmuir isotherm in compare to the Freundlich, due to its higher R2 value (0.992 
  16. Gasull M, Pumarega J, Kiviranta H, Rantakokko P, Raaschou-Nielsen O, Bergdahl IA, et al.
    Environ Res, 2019 Feb;169:417-433.
    PMID: 30529143 DOI: 10.1016/j.envres.2018.11.027
    BACKGROUND: The use of biomarkers of environmental exposure to explore new risk factors for pancreatic cancer presents clinical, logistic, and methodological challenges that are also relevant in research on other complex diseases.

    OBJECTIVES: First, to summarize the main design features of a prospective case-control study -nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort- on plasma concentrations of persistent organic pollutants (POPs) and pancreatic cancer risk. And second, to assess the main methodological challenges posed by associations among characteristics and habits of study participants, fasting status, time from blood draw to cancer diagnosis, disease progression bias, basis of cancer diagnosis, and plasma concentrations of lipids and POPs. Results from etiologic analyses on POPs and pancreatic cancer risk, and other analyses, will be reported in future articles.

    METHODS: Study subjects were 1533 participants (513 cases and 1020 controls matched by study centre, sex, age at blood collection, date and time of blood collection, and fasting status) enrolled between 1992 and 2000. Plasma concentrations of 22 POPs were measured by gas chromatography - triple quadrupole mass spectrometry (GC-MS/MS). To estimate the magnitude of the associations we calculated multivariate-adjusted odds ratios by unconditional logistic regression, and adjusted geometric means by General Linear Regression Models.

    RESULTS: There were differences among countries in subjects' characteristics (as age, gender, smoking, lipid and POP concentrations), and in study characteristics (as time from blood collection to index date, year of last follow-up, length of follow-up, basis of cancer diagnosis, and fasting status). Adjusting for centre and time of blood collection, no factors were significantly associated with fasting status. Plasma concentrations of lipids were related to age, body mass index, fasting, country, and smoking. We detected and quantified 16 of the 22 POPs in more than 90% of individuals. All 22 POPs were detected in some participants, and the smallest number of POPs detected in one person was 15 (median, 19) with few differences by country. The highest concentrations were found for p,p'-DDE, PCBs 153 and 180 (median concentration: 3371, 1023, and 810 pg/mL, respectively). We assessed the possible occurrence of disease progression bias (DPB) in eight situations defined by lipid and POP measurements, on one hand, and by four factors: interval from blood draw to index date, tumour subsite, tumour stage, and grade of differentiation, on the other. In seven of the eight situations results supported the absence of DPB.

    CONCLUSIONS: The coexistence of differences across study centres in some design features and participant characteristics is of relevance to other multicentre studies. Relationships among subjects' characteristics and among such characteristics and design features may play important roles in the forthcoming analyses on the association between plasma concentrations of POPs and pancreatic cancer risk.

  17. Gautam A, Sharma P, Ashokhan S, Yaacob JS, Kumar V, Guleria P
    Environ Res, 2023 Jul 15;229:116023.
    PMID: 37121351 DOI: 10.1016/j.envres.2023.116023
    A field study was conducted to investigate the influence of MgO-NPs priming on growth and development of mustard. Priming of mustard seeds before sowing with MgO-NPs at concentration 10, 50, 100, and 150 μg/ml enhanced the vegetative parameters of plants, with considerable increase in leaf area. MgO-NPs exposure increased the photosynthetic pigment accumulation in mustard that led to increase in biomass, carbohydrate content, and the yield in terms of total grain yield. Increased chlorophyll has simultaneously increased the oxidative stress in plants, and hence stimulated their antioxidant potential. A consistent increase was observed in the content of mustard polyphenols and activity of SOD, CAT, and APX on MgO-NPs exposure. MgO-NPs induced oxidative stress further reduced the protein content and bioavailability in mustard. We further, evaluated the influence of MgO-NPs on the quality of mustard harvested seeds. The seeds harvested from nanoprimed mustard possessed increased antioxidant potential and reduced oxidative stress. The carbohydrate and protein accumulation was significantly enhanced in response to nanopriming. Reduced chlorophyll content in seeds obtained from nanoprimed mustard indicated their potential for disease resistance and stability on long term storage. Therefore, the seeds harvested from MgO-NPs primed mustard were biochemically rich and more stable. Therefore, MgO-NPs priming can be potentially used as a novel strategy for growth promotion in plants where leaves are economically important and a strategy to enhance the seed quality under long term storage conditions.
  18. Gnanasekaran L, Manoj D, Rajendran S, Gracia F, Jalil AA, Chen WH, et al.
    Environ Res, 2023 Nov 01;236(Pt 2):116790.
    PMID: 37517483 DOI: 10.1016/j.envres.2023.116790
    The present study highlights the treatment of industrial effluent, which is one of the most life-threatening factors. Herein, for the first time, two types of NiO (green and black) photocatalysts were prepared by facile chemical precipitation and thermal decomposition methods separately. The synthesized NiO materials were demonstrated with various instrumental techniques for finding their characteristics. The X-ray diffraction studies (XRD) and X-ray photoelectron spectroscopy (XPS) revealed the presence of Ni2O3 in black NiO material. The transmission electron microscopic (TEM) images engrained the nanospherical shaped green NiO and nanoflower shaped black NiO/Ni2O3 materials. Further, the band gap of black NiO nanoflower was 2.9 eV compared to green NiO having 3.8 eV obtained from UV-vis spectroscopy. Meanwhile, both NiO catalysts were employed for visible light degradation, which yields a 60.3% efficiency of black NiO comparable to a 4.3% efficiency of green NiO within 180 min of exposure. The higher degrading efficiency of black NiO was due to the presence of Ni2O3 and the development of pores, which was evident from the Barrett-Joyner-Halenda (BJH) method. Type IV hysteresis was observed in black NiO nanoflowers with high surface area and pore size measurements. This black NiO/Ni2O3 synthesized from the thermal decomposition method has promoted better photocatalytic degradation of 4-chlorophenol upon exposure to visible light and is applicable for other industrial pollutants.
  19. Gou Z, Ma NL, Zhang W, Lei Z, Su Y, Sun C, et al.
    Environ Res, 2020 09;188:109829.
    PMID: 32798948 DOI: 10.1016/j.envres.2020.109829
    Intensive studies have been performed on the improvement of bioethanol production by transformation of lignocellulose biomass. In this study, the digestibility of corn stover was dramatically improved by using laccase immobilized on Cu2+ modified recyclable magnetite nanoparticles, Fe3O4-NH2. After digestion, the laccase was efficiently separated from slurry. The degradation rate of lignin reached 40.76%, and the subsequent cellulose conversion rate 38.37% for 72 h at 35 °C with cellulase at 50 U g-1 of corn stover. Compared to those of free and inactivated mode, the immobilized laccase pre-treatment increased subsequent cellulose conversion rates by 23.98% and 23.34%, respectively. Moreover, the reusability of immobilized laccase activity remained 50% after 6 cycles. The storage and thermal stability of the fixed laccase enhanced by 70% and 24.1% compared to those of free laccase at 65 °C, pH 4.5, respectively. At pH 10.5, it exhibited 16.3% more activities than its free mode at 35 °C. Our study provides a new avenue for improving the production of bioethanol with immobilized laccase for delignification using corn stover as the starting material.
  20. Gu H, Yan J, Liu Y, Yu X, Feng Y, Yang X, et al.
    Environ Res, 2023 May 01;224:115543.
    PMID: 36822540 DOI: 10.1016/j.envres.2023.115543
    Bioaugmentation helps to obtain a microbiome capable of remediating polycyclic aromatic hydrocarbons (PAHs). In this study, acclimation of microorganisms to soil supplemented with phenanthrene (PHE) led to enrichment with PAH-degraders, including those in Actinobacteriota and in the genera Streptomyces, Rhodococcus, Nocardioides, Sphingomonas, and Mycobacterium. Aqueous (28 °C, pH 6.5) and soil cultures inoculated with PHE-acclimated soil showed a high PHE (ca. 50 mg L-1) degradation efficiency. The PHE degradation kinetics in aqueous and soil incubations fitted to the Gompertz equation and the first-order kinetic equation, respectively. Indigenous microorganisms adapted to PHE in their environment, and this increased their capacity to degrade PHE. The effect of co-contaminants and pathway intermediates on PHE degradation showed that the degradation of PHE improved in the presence of diesel while being hindered by lubricant oil, catechol, salicylic and phthalic acid. Our findings provide theoretical and practical support for bioremediationof PAHs in the environment.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links